From PCP to ZK-STARK

Eli Ben-Sasson | Chief Scientist (East) | February 2019
Overview

1. Crypto proofs
 - PCP, IOP
 - STIK, STARK
 - FRI

2. Concrete Questions

zk-STARK | February 2019
Proofs of Computational Integrity (CI)

INTEGRITY

The quality of being honest
(Dictionary)
Proofs of Computational Integrity (CI)

INTEGRITY

The quality of being honest

(Dictionary)

COMPUTATIONAL INTEGRITY

The quality of a computation being executed honestly
Proofs of Computational Integrity (CI)

INTEGRITY

The quality of being honest
(Dictionary)

COMPUTATIONAL INTEGRITY

The quality of a computation being executed honestly

CI Statement: total=$138.16

Prover: Party producing proof
(here: Grocer)

Verifier: Party checking proof
(here: Customer)

Generic CI statement: Computation C, with public input x and auxiliary private input w, reached output y in T steps
Proofs of Computational Integrity (CI)

INTEGRITY

The quality of being honest (Dictionary)

COMPUTATIONAL INTEGRITY

The quality of a computation being executed honestly

Grocery receipts are proofs of computational integrity

- Verification via naive re-execution of computation
- Proof is (i) deterministic, (ii) error free, (iii) one-shot (non-interactive)

Generic CI statement: Computation C, with public input x and auxiliary private input w, reached output y in T steps
Proofs of Computational Integrity (CI)

INTEGRITY

The quality of being honest (Dictionary)

COMPUTATIONAL INTEGRITY

The quality of a computation being executed honestly

Grocery receipts are proofs of computational integrity

- Verification via naive re-execution of computation
- Proof is (i) deterministic, (ii) error free, (iii) one-shot (non-interactive)
- Modern CI proofs have (i) randomness, (ii) small error, (iii) interaction; in return, offer many benefits...

Generic CI statement: Computation C, with public input x and auxiliary private input w, reached output y in T steps
Generic CI statement: Computation \mathcal{C}, with public input x and auxiliary private input w, reached output y in T steps
Modern Computational Integrity proofs [GMR85]

IP, ZK, CS, PCP, MIP, IPCP, LPCP, PCIP, IOP, ...

Privacy (Zero Knowledge, ZK): Prover’s private inputs are shielded.

Generic CI statement: Computation C, with public input x and auxiliary **private input w**, reached output y in T steps.
Modern Computational Integrity proofs [GMR85]

Privacy (Zero Knowledge, ZK): Prover’s private inputs are shielded

Scalability: for computation lasting T cycles, proofs
- generated in $\sim T$ cycles (quasi-linear in T), and
- verified exponentially faster than T ($\sim \log T$ cycles)

Generic CI statement: Computation C, with public input x and auxiliary private input w, reached output y in T steps
Modern Computational Integrity proofs [GMR85]

Privacy (Zero Knowledge, ZK): Prover’s private inputs are shielded

Scalability: for computation lasting T cycles, proofs
- generated in $\sim T$ cycles (quasi-linear in T), and
- verified exponentially faster than T ($\sim \log T$ cycles)

Universality (Turing Completeness): apply to any computation C

Generic CI statement: Computation C, with public input x and auxiliary private input w, reached output y in T steps
Modern Computational Integrity proofs [GMR85]

Privacy (Zero Knowledge, ZK): Prover’s private inputs are shielded

Scalability: for computation lasting T cycles, proofs
- generated in \(\sim T \) cycles (quasi-linear in T), and
- verified exponentially faster than T (\(\sim \log T \) cycles)

Universality (Turing Completeness): apply to any computation \(C \)

Transparency: All verifier messages are public random coins

Generic CI statement: Computation \(C \), with public input \(x \) and auxiliary private input \(w \), reached output \(y \) in \(T \) steps
Modern Computational Integrity proofs [GMR85]

IP, ZK, CS, PCP, MIP, IPCP, LPCP, PCIP, IOP, ...

- Privacy (Zero Knowledge, ZK): Prover’s private inputs are shielded
- Scalability: for computation lasting T cycles, proofs
 - generated in $\sim T$ cycles (quasi-linear in T), and
 - verified exponentially faster than T ($\sim \log T$ cycles)
- Universality (Turing Completeness): apply to any computation
- Transparency: All verifier messages are public random coins

Privacy examples

- Zcash shielded transaction: shield payer, payee and payment amount
- Paid taxes on all my 2018 transactions, without revealing them
- My crypto exchange is in the black, without showing my positions
- ...

\[\deg(f(x) \mod Z_H(x)) < |H| - 1 \]

\[(x - \beta^2)^z = a(w^2 + w) \land (z^2 = z) \sum_{h} f(h) = 0 \iff \deg(l) = 0 \]

zk-STARK | February 2019
Modern Computational Integrity proofs [GMR85]

Privacy (Zero Knowledge, ZK): Prover’s private inputs are shielded

Scalability: for computation lasting T cycles, proofs
- generated in ~ T cycles (quasi-linear in T), and
- verified exponentially faster than T (~ log T cycles)

Universality (Turing Completeness): apply to any computation

Transparency: All verifier messages are public random coins

Scalability examples

<table>
<thead>
<tr>
<th>Naïve computation time</th>
<th>Verifier time</th>
<th>Prover time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mega (2^{20})</td>
<td>400</td>
<td>400-Mega</td>
</tr>
<tr>
<td>Giga (2^{30})</td>
<td>900</td>
<td>900-Giga</td>
</tr>
<tr>
<td>Tera (2^{40})</td>
<td>1600</td>
<td>1600-Tera</td>
</tr>
<tr>
<td>Peta (2^{50})</td>
<td>2500</td>
<td>2500-Peta</td>
</tr>
</tbody>
</table>

Modern Computational Integrity proofs [GMR85]

Privacy (Zero Knowledge, ZK): Prover’s private inputs are shielded

Scalability: for computation lasting T cycles, proofs
- generated in ~ T cycles (quasi-linear in T), and
- verified exponentially faster than T (~ log T cycles)

Universality (Turing Completeness): apply to any computation

Transparency: All verifier messages are public random coins

Scalability examples

<table>
<thead>
<tr>
<th>Naïve computation time</th>
<th>Verifier time</th>
<th>Prover time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mega (2^{20})</td>
<td>400</td>
<td>400-Mega</td>
</tr>
<tr>
<td>Giga (2^{30})</td>
<td>900</td>
<td>900-Giga</td>
</tr>
<tr>
<td>Tera (2^{40})</td>
<td>1600</td>
<td>1600-Tera</td>
</tr>
<tr>
<td>Peta (2^{50})</td>
<td>2500</td>
<td>2500-Peta</td>
</tr>
</tbody>
</table>
Modern Computational Integrity proofs [GMR85]

Privacy (Zero Knowledge, ZK): Prover’s private inputs are shielded

Scalability: for computation lasting T cycles, proofs
- generated in $\sim T$ cycles (quasi-linear in T), and
- verified exponentially faster than T ($\sim \log T$ cycles)

Universality (Turing Completeness): apply to any computation

Transparency: All verifier messages are public random coins

Scalability examples

Proof scalability can solve blockchain scalability problems
- Suppose computing latest Bitcoin state takes 1Peta (2^{50}) steps
- A single prover spends $2500 \cdot 2^{50}$ steps, posts proof
- All other nodes verify exponentially faster, in 2500 steps
Modern Computational Integrity proofs [GMR85]

Privacy (Zero Knowledge, ZK): Prover’s private inputs are shielded

Scalability: for computation lasting T cycles, proofs
 - generated in ~ T cycles (quasi-linear in T), and
 - verified exponentially faster than T (~ log T cycles)

Universality (Turing Completeness): apply to any computation

Transparency: All verifier messages are public random coins

tl;dr my research: PCP-based proofs, concrete efficiency

- 1995: ZK w/ scalable verifier was “galactic algorithm”
- 2018: scalable ZK realized in code for meaningful computation
- using **scalable PCPs** and **Interactive Oracle Proofs (IOPs)**
Modern Computational Integrity proofs [GMR85]

IP, ZK, CS, PCP, MIP, IPCP, LPCP, PCIP, IOP, ...

- **Privacy (Zero Knowledge, ZK):** Prover’s private inputs are shielded
- **Scalability:** for computation lasting T cycles, proofs
 - generated in ~ T cycles (quasi-linear in T), and
 - verified exponentially faster than T (~ log T cycles)
- **Universality (Turing Completeness):** apply to any computation
- **Transparency:** All verifier messages are public random coins

tl;dr my research: PCP-based proofs, concrete efficiency

Many flavors of proof systems

Variety of theoretical constructions (past 30 yrs)

PCP based, linear PCPs, elliptic curve+pairing based succinct NIZKs, proofs for muggles, quadratic span/arithmetic programs (QAP/QSP), interactive oracle proofs (IOP), ...
Many flavors of proof systems

Variety of theoretical constructions (past 30 yrs)

PCP based, linear PCPs, elliptic curve+pairing based succinct NIZKs, proofs for muggles, quadratic span/arithmetic programs (QAP/QSP), interactive oracle proofs (IOP), ...

...and implementations (past 5 yrs)

Pinocchio, libsnark, Zcash, Pepper, Buffet, ZKboo, Ligero, Bulletproofs, Hyrax, libstark, Aurora, ...

See zk.science
Overview

- 1: Cryptoproofs
- 2: PCP, IOP, STIK, STARK, FRI
- 3: Concrete Questions
zk-STARK definition [BBHR18]

An argument system is a zk-STARK if it satisfies:

zk **zero knowledge**: private inputs are shielded

S **Scalable**: proofs for CI of computation lasting T cycles are
- generated in roughly T cycles (quasi-linear in T), and
- verified exponentially faster than T (roughly $\log T$ cycles)

T **Transparent**: verifier messages are random coins; no trusted setup

AR **Argument of Knowledge**: proof can be generated only by party knowing private input (formally: an efficient procedure can extract the secrets from a prover)
zk-STARK definition [BBHR18]

An argument system is a zk-STARK if it satisfies:

zk
- zero **knowledge**: private inputs are shielded

S
- Scalable: proofs for CI of computation lasting T cycles are
 - generated in roughly T cycles (quasi-linear in T), and
 - verified exponentially faster than T (roughly $\log T$ cycles)

T
- Transparent: verifier messages are random coins; no trusted setup

AR
- Argument of Knowledge: proof can be generated only by party knowing private input (formally: an efficient procedure can extract the secrets from a prover)

- STARKs may be interactive (use blockchain as source of transparent randomness), gives shorter & safer proofs
- 1st STARK implementation: SCI-POC [BCG+16]; 1st zk-STARK: libstark [BBHR18]
"In this setup, a single reliable PC can monitor the operation of a herd of supercomputers working with possibly extremely powerful but unreliable software and untested hardware" [Babai, Fortnow, Levin, 1991]

Setup: to prove $x \in L$ for some $L \in NTIME(T(n))$

- Verifier has oracle access to PCP π,
- Verifier runs in time $\text{poly}(n + \log (T(n)))$
- If $x \in L$ then exists π accepted w.p. 1
- If $x \in L$ then all π rejected w.p. $> \frac{1}{2}$
PCP and scalability [BFL, BFLS, AS, AL, K, M 1991-4]

1995

Proof activity time

Computation time

Naive:
- Verification = proving

PCP:
- Poly-logarithmic verification

\[\kappa = \frac{T}{T_V} \]
PCP and scalability [BFL, BFLS, AS, ALMSS, K, M 1991-4]

1995

Proof activity time

\[\kappa = \frac{T}{T_V} \]

Computation time

Verifier compute/unit of time

Naive:
- Verification = proving

PCP:
- Poly-logarithmic verification

Verifiable activity time

Naive verifier

Veriﬁer compute/unit of time

naive verifier
PCP and scalability [BFL, BFLS, AS, ALMSS, K, M 1991-4]

Naive:
- Verification = proving

PCP:
- Polynomial proving time
- Poly-logarithmic verification

\[\kappa = \frac{T}{T_V} \]

Proof activity time

Computation time

Proofer compute/unit of time

Verifier compute/unit of time
PCP and scalability [BS, BGHSV, D, M, 2003-8]

Naive:
Verification = proving

PCP:
Quasi-linear proving
Poly-logarithmic verification

\[\kappa = \frac{T}{T_V} \]
PCPs and polylogarithmic verification

“In this setup, a single reliable PC can monitor the operation of a herd of supercomputers working with possibly extremely powerful but unreliable software and untested hardware. “ [Babai, Fortnow, Levin, 1991]

Setup: to prove $x \in L$ for some $L \in NTIME(T(n))$

- Verifier has oracle access to PCP π,
- Verifier runs in time $\text{poly}(n + \log (T(n)))$
- If $x \in L$ then exists π accepted w.p. 1
- If $x \in L$ then all π rejected w.p. $> \frac{1}{2}$
Interactive Oracle Proofs (IOP) [RRR16, BCS16]

IOP setup: to prove $x \in L$ for some $L \in NTIME(T(n))$

- Verifier has oracle access to 1st oracle π_0,
- Verifier sends public randomness r_0
Interactive Oracle Proofs (IOP) [RRR16, BCS16]

IOP setup: to prove \(x \in L \) for some \(L \in \text{NTIME}(T(n)) \)

- Verifier has oracle access to 1\(^{st}\) oracle \(\pi_0 \),
- Verifier sends public randomness \(r_0 \)
- Verifier has oracle access to 2\(^{nd}\) oracle \(\pi_0 \)
- ...

\[= 0 \iff \deg(f(x) \mod Z_H(x)) < |H| - 1 \]
Interactive Oracle Proofs (IOP) [RRR16, BCS16]

IOP setup: to prove $x \in L$ for some $L \in \text{NTIME}(T(n))$

- Verifier has oracle access to 1st oracle π_0,
- Verifier sends public randomness r_0
- Verifier has oracle access to 2nd oracle π_0
- ...
- Verifier runs in time $\text{poly}(n + \log(T(n)))$
- If $x \in L$ then $\exists \pi_0, \pi_1, \ldots, \pi_t$ accepted w.p. 1
- If $x \in L$ then all $\forall \pi$ rejected w.p. $> \frac{1}{2}$
Scalable Transparent ARGument of Knowledge (STARK)

An argument system is a zk-STARK if it satisfies:

zk **zero knowledge**: private inputs are shielded

S **Scalable**: proofs for CI of computation lasting T cycles are
- generated in roughly T cycles (quasi-linear in T), and
- verified exponentially faster than T (roughly log T cycles)

T **Transparent**: verifier messages are random coins; no trusted setup

AR **ARGument of Knowledge**: proof can be generated only by party knowing private input (formally: an efficient procedure can extract the secrets from a prover)
IOP tl;dr

With IOPs, can prove results that are yet unknown in PCP model

• 2-round IOP with perfect ZK, non-adaptive verifier for NP [BCGV16]
• Doubly-efficient, constant round, Interactive Proofs [RRR16]
• $O(1)$-round IOP with linear bit-length proofs and constant query comp [BCGRS17]
• Proximity protocols for Reed-Solomon with linear arithmetic complexity and logarithmic query complexity [BBHR18]
• ...
• Concretely efficient ZK-STARKs [BBC+16, BBHR18, ...]
PCP and scalability [BS, BGHSV, D, M, 2003-8]

2006

Proof activity time

Prover compute/unit of time

Verifier compute/unit of time

Computation time

\[\kappa = \frac{T}{T_V} \]

Commitment (Merkle tree root)

\[\nu(Z) = x - \beta^2 \]

\[\nu(H) = a(w^2 + w) \]

\[\nu(x) = \left(\sum_z \nu(f(z)) + \sum_z \nu(f(0)) \right)^n \]

\[\nu(H) = 0 \iff \deg f = 0 \]

\[\deg f(x) \mod Z_H(x) < |H| - 1 \]
IOP and Scalability [BBC+16, BBHR18]

\[\kappa = \frac{T}{T_V} \]

Verdicts:
- \(\pi_0 \)
- \(\pi_1 \)
- \(\pi_2 \)

Commitment (Merkle tree root)

Proof activity time

Computation time

naive verifier prover
IOP and Scalability

12/2018

Proof activity time

Prover compute/unit of time

Computation time

Proof activity time (ms)

STARK Prover/Naive ratio ~ 35X

STARK Prover

Naïve

STARK verifier

ZOOM IN

#Pedersen hashes (log scale)

1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192

STARK prover

STARK verifier

Naïve

T480 laptop

i7-8550U CPU @ 1.80GHz

Quad-core

32 GB DDR4 RAM

zk-STARK | February 2019
Scalable Transparent IOP of Knowledge (STIK) [BBHR18]

Definition:

An IOP for $L \in NTIME(T(n))$ is said to be:

- **Scalable** if both of the following hold:
 - Proving time $T_P = \tilde{O}(T(n)) + poly(n) = T(n) \cdot \log^0 T(n) + poly(n)$
 - Verifying time $T_V = poly \log T(n)$

- **Transparent** if all verifier messages are public random coins (Arthur-Merlin protocols)

- **IOP of Knowledge** if there exists an extractor E that extracts in time $poly T(n)$ a witness w for membership of $x \in L$, from ``good'' prover P_x
Strict STIK (arithmetic complexity)

Definition:

An STIK for \(L \in \text{NTIME}(T(n)) \) is

- **Strictly Scalable** if both of the following hold:
 - Proving time \(T_P = O(T(n) \log T(n)) \)
 - Verifying time \(T_V = O(\log T(n)) + \tilde{O}(n) \)

Thm [B, Chiesa, Goldberg, Gur, Riabzev, Spooner, 2019]:

Every \(L \in \text{NTIME}(T(n)) \) has a strict (ZK)-STIK, where \(T_P, T_V \) are measured using arithmetic complexity over field of size \(O(T(n)) \)

Question: Strict STIK, Boolean complexity?
Interactive Oracle Proofs of Proximity (IOPP) [RRR16, BCS16]

IOPP: to prove oracle \(f \) close to code \(C \subset F^n \)

- Verifier sends public randomness \(r_0 \)
- Verifier has oracle access to 1st oracle \(\pi_1 \)
- ...
- Verifier runs in time \(\text{poly}(n + \log (T(n))) \)
- If \(f \in C \) then \(\exists \pi_0, \pi_1, \ldots, \pi_t \) accepted w.p. 1
- Otherwise, \(\forall \pi \) rejected w.p. \(>s(\Delta(f, C)) \)
- \(s \) is soundness function, want to maximize it
Fast Reed-Solomon IOPP (FRI) [B, Bentov, Horesh, Riabzev 2018]

Definition: Reed-Solomon code (low deg polys)

\[RS[F, S, \rho] = \{ f: S \to F \mid \deg(f) < \rho |S| \} \]

Thm [BBHR 2018]:

\(\forall S \subseteq F, S \) is a group of size \(N = 2^n \), the code \(RS[F, S, \rho] \) has a (fast) IOPP with

- \(T_p \leq 6 \cdot N \)
- \(T_v \leq 21 \cdot \log N \)
- \(s(\delta) \geq \min\{\delta_0, \delta\} \) for \(\delta_0 \approx \frac{1-\rho^4}{4} \) \([\text{BKS18}]\)
- \(\delta_0 \approx 1 - \rho^\frac{1}{3} \) \([\text{BGKS19}]\)

Question: Is \(s(\delta) \geq \delta - \left(\frac{|S|}{|F|} \right)^{O(1)} \) for \(\delta \) as large as \(1 - \rho \)?
Overview

1. Cryptoproofs
2. PCP, IOP, STIK, STARK, FRI
3. Concrete Questions

zk-STARK | February 2019
Theory questions with practical impact

1. Strict STIK, Boolean complexity
 - $T_P = O(T(n) \log T(n))$ and $T_P = O(\log T(n))$
 - Approach: use AG codes over constant alphabets
 - Requires quasi-linear encoding time for AG codes

2. Better soundness analysis for FRI
 - Is $s(\delta) \geq \delta - \left(\frac{|S|}{|F|}\right)^{O(1)}$ for δ greater than $1 - \rho^\frac{1}{3}$?
 - Reaching Johnson bound $(1 - \sqrt{\rho})$? Beyond it?

3. Sliding scale conjecture for IOP and STIK?
 - Currently soundness error greater than rate (ρ)
 - Want soundness error closer to $\text{poly}(\frac{1}{|F|})$
 - Perhaps simpler to solve for IOPs than for PCPs?
Crypto-Security Questions

1. **STARK-friendly crypto primitives**
 • SHA2/3 STARK “cost” ≈ 10⁴
 • Pedersen STARK “cost” ≈ 10³
 • MiMC/Jarvis/Friday “cost” ≈ 10² [AGRRT16, AD18]
 • How low can you get? Algebraic security analysis?

2. **STARK/STIK security analysis**
 • Best efficient attack on FRI? on other PCPs/PCPPs? [BBGR16]

3. **STARK-friendly commitments and accumulators**
 • Replace Merkle trees with more efficient data structures? [LM18, BBF18]
 • With Merkle trees in RO model, do you need \(\lambda \) or \(2\lambda \) bits RO to reach \(2^{-\lambda} \) soundness error?

4. **How to formally verify a STIK/STARK constraint system?**
Questions?

we’re hiring: jobs@starkware.co
learn more: workshop@starkware.co