Zero-Knowledge Proofs of Knowledge

Yehuda Lindell
Bar-Ilan University
Knowledge – Motivation

• Prove that you know the shortest path from A to B
 • A shortest path exists, but who says that you know it?

• Prove identity:
 • For public key \(h = g^x \) in a group where discrete log is hard, prove that I know \(x \)
 • This proves identity since it is my private key and only I know it
 • Attempt: prove in ZK that \(h \in L \) for \(L = \{h \mid \exists x: g^x = h\} \)
 • Problem:
 • This statement is TRUE for all group elements (and so ZK is actually trivial – send YES)
 • Who says that I need to know a witness to prove a true statement
What is Knowledge?

• **Definition**: a student knows the material if she can output it
 • We approximate this by saying that a student knows the material if she can output the answers to the questions on the test

• **Definition**: a machine knows something if it can output it
 • Let R be an NP-relation
 • A machine knows the witness to a statement \(x \) if it can output \(w \) s.t. \((x, w) \in R \)

• What does it mean for a machine to be able to output it?
Formalizing Knowledge (first attempt)

• Attempt 1: a machine M knows the witness to a statement x if there exists some M' who outputs w s.t. $(x, w) \in R$

• Questions:
 • How does this relate to the machine’s actions (e.g., proving a proof)?
 • How is M' related to M; if there is no connection then why does M know it?
Formalizing Knowledge (second attempt)

• Attempt 2:
 • We define a PPT oracle machine K, called a knowledge extractor
 • We say that M knows the witness to a statement x if $K^M(\cdot)(x)$ outputs w s.t. $(x, w) \in R$
 • K interacts with M and can use whatever it does to obtain w
 • Since K is generic, its ability to output w means that M knows w

• Questions:
 • This still doesn’t relate to the machine’s actions (e.g., proving a proof)?
 • K could still just know w independently of M
Formalizing Knowledge (third attempt)

• **Definition:**
 - We define a PPT oracle machine K, called a knowledge extractor.
 - We say that a prover P^* knows the witness to a statement x if $K^{P^*(\cdot)}(x)$ outputs w s.t. $(x, w) \in R$ whenever P^* convinces V of x.

• **Intuition:**
 - K is generic and works for any x and any P^*: if P^* can convince V then K can output w and so M knows w.

• **Question:** what does it mean: “whenever P^* convinces V of x”?
 - K should run in (expected) polynomial-time and output a witness w with the same probability that P^* convinces V of x.

Formalizing Knowledge (final)

• One can always prove in ZK without knowing, with negligible prob
 • Run the zero-knowledge simulator and hope that the verifier’s queries in the result match the real queries

• The definition is updated to allow a knowledge error κ, which takes this into account
 • If P^* convinces V of x with probability $> \kappa$, then K should run in (expected) polynomial-time and output a witness w with probability at most κ less than P^* convinces V of x

• This property is called knowledge soundness
The Definition

• Definition (knowledge soundness):
 • A proof system has **knowledge soundness** with error κ if there exists a PPT K s.t. for every prover P^*, if P^* convinces V of x with probability $\epsilon > \kappa$, then $K^{P^*} (\cdot) (x)$ outputs w s.t. $(x, w) \in R$ with probability at least $\epsilon(|x|) - \kappa(|x|)$
An Alternative Formulation

Motivation: one can trade off running time and success probability
- Definition says: run in PPT and output w.p. ϵ
- Alternative definition: run in expected time $\frac{1}{\epsilon}$ and always output

Definition (knowledge soundness):
- A proof system has **knowledge soundness** with error κ if there exists a K s.t. for every prover P^*, if P^* convinces V of x with probability $\epsilon > \kappa$, then

$$K^{P^*}(\cdot)(x) \text{ outputs } w \text{ s.t. } (x, w) \in R \text{ in expected time } \frac{\text{poly}(|x|)}{\epsilon(|x|) - \kappa(|x|)}$$
Equivalence of the Definitions

• **Original implies alternative:**
 - We are given K that runs in PPT and outputs a witness w.p. ϵ
 - We can run K many times until a witness is output
 - Since it is an **NP relation**, can verify when get correct result
 - Expected number of times needed is $1/\epsilon$

• **Alternative implies original:**
 - We are given K that runs in time $1/\epsilon$ and outputs a witness
 - For $i = 1, ..., n$, run K for 2^{i+1} steps; if finish output witness; else proceed w.p. $\frac{1}{2}$
 - Let i be smallest s.t. $2^{i+1} > 1/\epsilon$: probability of getting here is at least $2^{-(i+1)} > \epsilon$
 - Expected running time is $poly(|x|)$
Definition of ZKPOK

• A proof system is a zero-knowledge proof of knowledge if it has
 • Completeness: honest prover convinces honest verifier
 • Zero knowledge: ensures verifier learns nothing
 • Knowledge soundness: ensures prover knows witness

• Zero knowledge is a property of the prover
 • Prover behavior is guaranteed to reveal nothing
 • Protect against a cheating verifier

• Knowledge soundness is a property of the verifier
 • Verifier behavior guarantees that prover knows witness
 • Protect against a cheating prover
Reducing Knowledge Error

• Sequential composition reduces knowledge error exponentially

• Exponentially small error = zero error
 • Assume knowledge error $\kappa < 2^{-|x|}$ and consider alternative definition
 • Run $K^{P^*(\cdot)}(x)$ in parallel to running a brute-force search on witness
 • Assume brute force in time $2^{|x|}$
 • Let P^* be s.t. it convinces V of x with probability ϵ
 • If $\epsilon > 2 \cdot \kappa$ then $\frac{\text{poly}(|x|)}{\epsilon - \kappa} < \frac{2 \cdot \text{poly}(|x|)}{\epsilon}$ and so succeed in time $\frac{\text{poly}'(|x|)}{\epsilon}$
 • If $\epsilon < 2 \cdot \kappa$ then $\frac{\text{poly}(|x|)}{\epsilon} > 2^{|x|} \cdot \text{poly}(|x|)$ and so brute force finishes
Constructing ZKPOKs

A Zero-Knowledge proof for QR_N

$x = w^2 \mod N$ \hspace{1cm} P \hspace{1cm} x \in QR_N$ \hspace{1cm} V

$r \in_R \mathbb{Z}^*_N$

\[y = r^2 \]

\[b \]

\[b = 0: \quad z = r \]
\[b = 1: \quad z = wr \]

\[b \in_R \{0,1\} \]

\[z^2 \equiv y \]
\[z^2 \equiv xy \]
Knowledge Extraction Idea

- K invokes P^* and “receives” some y
- K “sends” P^* the query $b = 0$ and receives z_0
- K **rewinds** and “sends” P^* the query $b = 1$ and receives z_1
- K outputs $w = \frac{z_1}{z_0} \mod N$

Proof:

- If P^* convinces w.p. greater than $\kappa = \frac{1}{2}$ then $(z_0)^2 = y$ and $(z_1)^2 = xy$
 - I am assuming for deterministic P^*; to discuss!
- Thus $w^2 = \left(\frac{z_1}{z_0}\right)^2 = \frac{xy}{y} = x$ and so K outputs a square root
ZKPOK for NP

An interactive proof for HAM

Ham cycle w
$\pi \in_R S_n$

P
$c = \text{Com}(\pi(G))$

V
$b \in_R \{0,1\}$

$u=\pi(w)$
$b = 0$: $u \in \text{Dec}(c)$

$b = 1$: $\pi, H = \text{Dec}(c)$

Verify that u is a cycle

Verify that $H = \pi(G)$
ZKPOK for NP

- K invokes P^* and receives a commitment c
- K sends P^* the query $b = 0$ and receives a cycle w
- K rewinds and sends P^* the query $b = 1$ and receives π, \tilde{G}

Proof:

- If P^* convinces w.p. greater than $\kappa = \frac{1}{2}$ then w is a cycle in $\tilde{G} = \pi(G)$
- Thus, $\pi^{-1}(w)$ is a Hamiltonian cycle in G
ZKPOK for NP with Negligible Error

- Run Hamiltonicity $n = |x|$ times sequentially
- Extractor strategy:
 - Consider binary tree of execution
 - Attempt to extract in ith execution
 - If P^* answers both queries, get Hamiltonian cycle
 - If P^* answers neither query, V always rejects
 - If P^* answers exactly one query, go down that edge
 - Repeat with next execution
- Extraction fails iff P^* answers exactly one query in each execution
- Thus, extraction works with probability 1 if $\epsilon > 2^{-n}$
Strong Proofs of Knowledge

• **Definition – strong knowledge soundness**
 • A proof system has **strong knowledge soundness** if there exists a negligible function μ and a PPT K s.t. for every prover P^*, if P^* convinces V of x with probability $\epsilon > \mu$, then $K^{P^*(\cdot)}(x)$ outputs w s.t. $(x, w) \in R$ with probability at least $1 - \mu(|x|)$

• **Theorem:** sequential Hamiltonicity is a strong proof of knowledge
Using the Alternative Definition

• **Definition (knowledge soundness):**

 A proof system has **knowledge soundness** with error κ if there exists a K s.t. for every prover P^*, if P^* convinces V of x with probability $\epsilon > \kappa$, then

 $$K^{P^*}(\cdot)(x)$$

 outputs w s.t. $(x, w) \in R$ in expected time

 $$\frac{\text{poly}(|x|)}{\epsilon(|x|) - \kappa(|x|)}$$

• What does it help to run in time

 $$\frac{\text{poly}(|x|)}{\epsilon(|x|)}$$

 when this may not be polynomial time?
Using the Alternative Definition

• A classic use of zero-knowledge proofs of knowledge:
 • Within a protocol, prover proves the proof
 • To prove security, a simulator (or reduction) needs the witness
 • Unless verifier would reject, in which case it doesn’t matter

• Using ZKPOKs in proofs of security – simulator (or reduction) plays verifier with prover:
 • If the verifier rejects, then the simulator can halt, since a real verifier would
 • If the verifier accepts, then the simulator now has to extract the witness
ZKPOK Inside a Protocol

• Recall simulator (reduction) strategy:
 • Verify, then halt if reject and extract if accept

• What is the expected running time of this simulator (reduction)?
 • Probability that prover convinces verifier is $\epsilon(|x|)$
 • Assuming that the knowledge error κ is 0:
 $$E[\text{Time}] = (1 - \epsilon(|x|)) \cdot \text{poly}(|x|) + \epsilon(|x|) \cdot \frac{\text{poly}(|x|)}{\epsilon(|x|)} = \text{poly}(|x|)$$
 • Assuming that the knowledge error κ is negligible:
 $$E[\text{Time}] = (1 - \epsilon(|x|)) \cdot \text{poly}(|x|) + \epsilon(|x|) \cdot \frac{\text{poly}(|x|)}{\epsilon(|x|) - \kappa(|x|)} = \text{poly}(|x|) + \frac{\epsilon(|x|)}{\epsilon(|x|) - \kappa(|x|)}$$
 • Actually not polynomial, but can be fixed...
ZKPOK in a Protocol

• The issue that arises is that need to both
 • Simulate the view of the prover in the execution, and
 • Extract a witness

• This is called “witness-extended emulation”

• A witness-extended emulator $E^{P^*}(\cdot)(x)$ outputs a VIEW and some w:
 • The view output is indistinguishable from a real execution
 • The probability that the view is accepting and yet $(x, w) \not\in R$ is negligible
 • E runs in expected polynomial-time
Witness-Extended Emulation

• **Lemma**: If \((P, V)\) is a ZKPOK, then there exists a witness extended emulator for \((P, V)\).
 • Very useful when use ZKPOK inside proofs of security (and greatly simplifies)

• Can also formalize an ideal ZK functionality:
 \[
 \mathcal{F}_{zk}(x, w, x) = (\lambda, R(x, w))
 \]

• **Lemma**: If \((P, V)\) is a ZKPOK, then it securely computes the ideal ZK functionality (in the secure computation sense).
Other Applications

- A zero-knowledge proof for NQR_N
- Non-oblivious encryption
- Prove that committed value has a property, for statistically hiding
- Identification schemes
A zero-knowledge proof for QR_N

Interactive proof for QR_N [GMR’85]

<table>
<thead>
<tr>
<th>P</th>
<th>V</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x \notin QR_N$</td>
<td>$b \in_R {0,1}$</td>
</tr>
<tr>
<td>$z = y^2$</td>
<td>$y \in_R \mathbb{Z}_N^*$</td>
</tr>
<tr>
<td>$z = xy^2$</td>
<td>$b = 0$</td>
</tr>
<tr>
<td>$b'(z) = 0$</td>
<td>$z \in QR_N$</td>
</tr>
<tr>
<td>$b'(z) = 1$</td>
<td>$b \notin QR_N$</td>
</tr>
<tr>
<td>$b' \not= b$</td>
<td></td>
</tr>
</tbody>
</table>
A ZK proof for $\overline{QR_N}$

• Why is the proof not ZK?
 • The verifier may have some z and wants to know if is QR or not

• How can we make this proof ZK?
 • The verifier sends z and proves that it knows y s.t. $z = xy$ or $z = xy^2$

• Why is ZK not enough and why is a ZKPOK needed?
 • Intuitively: for every z, there exists a y s.t. $z = xy$ or $z = xy^2$, so statement is always true
 • Formally: simulation strategy
A ZK proof for \overline{QR}_N

• Simulation Strategy
 • Simulator S runs V^* and gets z
 • Simulator doesn’t know whether it should answer $b = 0$ or $b = 1$
 • Simulator runs the knowledge extractor on the proof from V^* and gets y
 • Simulator checks if $z = xy$ or $z = xy^2$, and so knows if $b = 0$ or $b = 1$
Non-Oblivious Encryption

• Provide an encryption and prove that you know what’s encrypted

• Motivation:
 • Prevent copying (e.g., in auction)
 • Guarantee non-malleability (did not take a previous ciphertext and maul)
Prove Property of Statistical Committed Value

• Consider a statistically-hiding commitment scheme
 • A commitment value c can be a commitment to any message
• Committer wishes to prove that it committed to a value in a certain range (or any other property)
• Statement is almost always true for any given c
• The question is whether the committer knows a decommitment to a message with this property
• **Rule**: whenever ZK is used with statistical hiding, ZKPOK is needed
Identification Schemes

• Alice has a public key $h = g^x$
• In order to authenticate, she proves that she knows the dlog of h
• This must be a ZKPOK, since ZK for the language of DLOG is trivial
Questions?