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Abstract

We propose and investigate the notion of aggregate message authentication codes (MACs)
which have the property that multiple MAC tags, computed by (possibly) different senders on
multiple (possibly different) messages, can be aggregated into a shorter tag that can still be
verified by a recipient who shares a distinct key with each sender. We suggest aggregate MACs
as an appropriate tool for authenticated communication in mobile ad-hoc networks or other
settings where resource-constrained devices share distinct keys with a single entity (such as a
base station), and communication is an expensive resource.

1 Introduction

Aggregate signatures, introduced by Boneh et al. [5, 16], allow t distinct signatures by t (possibly
different) signers on t (possibly different) messages to be aggregated into a shorter signature that
still suffices to convince a verifier that each signer did indeed sign the appropriate message. Since
their introduction, various aggregate signature schemes have been proposed [12, 11, 6, 13, 4]. To
the best of our knowledge, however, no formal attention has yet been dedicated to the private-key
analogue of aggregate signatures: aggregate message authentication codes (MACs). In this paper,
we initiate a formal study of this primitive.

One reason for the relative lack of attention focused on aggregate MACs may be the (incorrect)
perception that they are of limited value. Indeed, the applications suggested in [5] — such as
compressing certificate chains, or reducing the message size in secure routing protocols — are
all specific to the public-key (rather than the shared-key) setting. Nevertheless, we suggest that
aggregate MACs can be very useful in specific domains. As perhaps the most compelling example,
consider the problem of authenticated communication in a mobile ad-hoc network (MANET), where
communication is considered a highly “expensive” resource because of its effect on the battery life
of the nodes. Here, there is a collection of t nodes U1, . . . , Ut, each of whom is interested in sending
messages to a base station B. We assume that the base station shares in advance a key ki with each
node Ui, and that node Ui authenticates any outgoing message mi by computing tagi = Macki(mi).

Most nodes cannot communicate directly with the base station due to the limited range of their
wireless devices, and so all communication is instead routed among the nodes themselves until it
reaches the base station. For simplicity in this example, let us assume that nodes are arranged
in a (logical) binary tree so that each node Ui at a leaf sends (mi, tagi) to its parent, and each
internal node Uj forwards to its own parent all the communication from its children in addition
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to (mj , tagj). The root U∗ in this example is the only node that is able to communicate directly
with the base station, and it forwards to the base station the communication from all nodes in the
network along with its own contribution (m∗, tag∗).

The messages themselves may be very short — corresponding, e.g., to temperature readings or
even just an indicator bit. For the sake of argument, let us say that messages are 16 bits long.
(Replay attacks can be addressed by using a counter shared by the base station and all nodes in
the network; this counter would be authenticated by each node along with the message, but would
not need to be transmitted and so does not affect the communication complexity in the calculation
that follows.) Furthermore, let us assume that the length of a MAC tag is 160 bits (e.g., if HMAC
is used), and take t = 104. The communication from the root node alone to the base station is then
(160 + 16) · t = 1.76 × 106 bits, while the total communication in the network is (approximately)
(160 + 16) · (2t log t) ≈ 4.6× 107 bits.

The above description assumes MACs used in the ‘standard’ manner, meaning that all MAC
tags are transmitted together with the messages. If an aggregate MAC were available, however,
then each node Uj would be able to combine its own MAC tag with those of its children. Say
this aggregation can be performed while maintaining the MAC tag length, even of aggregated tags,
at 160 bits. (Our construction will achieve this.) The communication from the root to the base
station will now be only 160+16t ≈ 1.6×105 bits, and the total communication in the network will
be improved to roughly 16(2t log t) + 160t ≈ 5.7 × 106 bits; this is roughly an order of magnitude
improvement in each case.

Aggregate MACs could also be used to improve the communication complexity in schemes such
as those of [14] or [9] which deal with aggregation of data. We do not explore this further here, as
we view the use of such techniques as tangential to the main thrust of this paper.

1.1 Our Contributions

Motivated in part by scenarios such as the above, we formally introduce here the notion of aggregate
MACs and initiate the first detailed study of this primitive. After giving appropriate definitions,
we show a simple and highly efficient construction of aggregate MACs based on a wide variety of
existing (standard) MACs. We remark that the existence of efficient aggregate MACs is somewhat
surprising since algebraic (i.e., number-theoretic) properties of the underlying signature scheme are
used to perform aggregation in the setting of aggregate signatures. In contrast, here we would like
to avoid number-theoretic constructions and base aggregate MACs on primitives like block ciphers
and hash functions that have limited algebraic structure. Summarizing, we prove the following
informally-stated theorem:

Theorem (basic construction – informally stated): If there exists a secure message authentication
code, then there exists a secure aggregate message authentication code with complexity as outlined
below.

The complexity of our construction is as follows:

• Aggregate MAC tag length: equal to a single tag in the basic MAC scheme

• Computation of a MAC tag in the aggregate scheme: the same as for the basic MAC scheme

• Computation of MAC tag aggregation: linear in the length of the tags to be aggregated

• Verification of ` aggregated MACs: equal to the time it takes to verify ` MACs in basic scheme

2



As can be seen from above, the complexity of our aggregate construction is essentially the same
as for a regular MAC scheme. This may be somewhat surprising since in the public-key setting
of aggregate signatures, it is significantly harder to obtain secure aggregation. Nevertheless, the
reason for this will become clear after seeing our construction in Section 3.

Lower bound. Our aggregate scheme works very well when the receiver wishes to verify the
authenticity of all the aggregated messages. However, if the receiver wishes to verify only one or
a few messages, it must still verify them all. (This is similar to the case of CBC encryption that
requires the receiver to decrypt the entire message even if it only wants to read the last block.) In
Section 4, we explore a variant of our main construction that offers a trade-off between the length of
an aggregate tag and the time required to verify individual messages. We also show a lower bound
showing that if constant or logarithmic-time verification of individual messages is desired, then the
aggregated tag length must be linear in the total number of messages whose tags are aggregated
(and so the trivial approach of concatenating individual tags is optimal up to a multiplicative factor
in the security parameter).

Related work. Subsequent to our work on this paper, we became aware of two other recent
papers [7, 3] that, inter alia, use what are essentially aggregate MACs (and, in fact, use essentially
the same construction we show in Section 3). The key additional contributions of our work are:
(1) we provide a formal definition of the problem and a proof of security for our construction;
(2) we suggest extensions of the construction offering the time/length trade-off discussed above;
and (3) we show a lower bound on the required tag length when fast verification of individual
messages is required.

2 Definitions

Our definitions are based on those given in [5, 16] for aggregate signatures. Rather than exploring
numerous possible special cases of the definitions, we make our definitions as general as possible
(and our construction will achieve these definitions). We begin with a functional definition. The
security parameter, which determines the length of the key, will be denoted by n.

Definition 0 An aggregate message authentication code is a tuple of probabilistic polynomial-time
algorithms (Mac,Agg, Vrfy) such that:

• Authentication algorithm Mac: upon input a key k ∈ {0, 1}n and a message m ∈ {0, 1}∗,
algorithm Mac outputs a tag tag. We denote this procedure by tag ← Mack(m).

• Aggregation algorithm Agg: upon input two sets of message/identifier1 pairs M1 =
{(m1

1, id
1
1), . . ., (m1

`1
, id1

`1}, M2 = {(m2
1, id

2
1), . . . , (m

2
`2

, id2
`2)} and associated tags tag1, tag2,

algorithm Agg outputs a new tag tag. We stress that this algorithm is unkeyed.

• Verification algorithm Vrfy: upon receiving a set of key/identifier pairs {(k1, id1), . . .,
(kt, idt)}, a set of message/identifier pairs M = {(m1, id

′
1), . . ., (m`, id

′
`)}, and a tag tag,

algorithm Vrfy outputs a single bit, with ‘1’ denoting acceptance and ‘0’ denoting rejection.
We denote this procedure by Vrfy(k1,id1),...,(kn,idt)(M, tag). (In normal usage, id′i ∈ {id1, . . . , idt}
for all i.)

1We discuss the role of the identifiers below.
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The following correctness conditions are required to hold:

• For all k, id,m ∈ {0, 1}∗, it holds that Vrfyk,id(m,Mack(m)) = 1. (This is essentially the
correctness condition for standard MACs.)

• Let M1, M2 be two sets of message/identifier pairs with2 M1∩M2 = ∅, and let M = M1∪M2.
If:

1. Vrfy(k1,id1),...,(kt,idt)(M
1, tag1) = 1, and

2. Vrfy(k1,id1),...,(kt,idt)(M
2, tag2) = 1,

then Vrfy(k1,id1),...,(kn,idn)(M, Agg(M1,M2, tag1, tag2)) = 1.

The second correctness condition states that the aggregation of MAC tags still enables correct

verification.
The use of identifiers is merely a technical way to differentiate between different senders: in

order to know which secret key to use for verification, the receiver needs to know which message is
associated with which sender. (Thus, in the second correctness condition, enforcing M1 ∩M2 = ∅
just means that aggregation is not applied if the same sender authenticated the same message
twice.) Note that identifiers are not needed in the setting of aggregate signatures where each
sender is associated with a unique public key which, in effect, serves as an identifier. For simplicity
in what follows, we write Vrfyk1,...,kt

(·, ·) for the verification algorithm, and we sometimes find it
convenient to set idi = i (it can be checked that this has no effect on our results).

An aggregate MAC would be used as follows. A receiver R who wants to receive authenticated
messages from t senders begins by sharing uniformly random keys k1, . . . , kt ∈ {0, 1}n with each
sender (i.e., key ki is shared with the sender with identity idi). When sender idi wishes to authen-
ticate a message mi, it simply computes tagi ← Macki(mi). Given a tag computed in this way, and
a second tag tagj computed by sender idj on the message mj , these two tags can be aggregated
by computing the value tag ← Agg({(mi, idi)}, {(mj , idj)}, tagi, tagj). The receiver can then check
that sender idi authenticated mi, and that sender idj authenticated mj , by computing

Vrfyki,kj

({(mi, idi), (mj , idj)}, tag
)

and verifying that the output is 1. Note that we do not assume idi 6= idj . (But, as per footnote 2,
we do assume (mi, idi) 6= (mj , idj).)

As in the case of aggregate signatures, our definition of security corresponds to existential un-
forgeability under an adaptive chosen-message attack [8]. Because we are in the shared-key setting,
however, there are some technical differences between our definition and the security definition for
aggregate signatures. In particular, we consider an adversary who may adaptively corrupt various
senders and learn their secret keys, and require security to hold also in such a setting.

Definition 1 Let A be a non-uniform probabilistic polynomial-time adversary, and consider the
following experiment involving A and parameterized by a security parameter n:

• Key generation: Keys k1, . . . , kt ∈ {0, 1}n, for t = poly(n), are generated.

• Attack phase: A may query the following oracles:

– Message authentication oracle Mac: On input (i,m), the oracle returns Macki(m).

2This technical condition ensures that the same message/identifier pair does not appear in both M1 and M2.
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– Corruption oracle Corrupt: upon input i, the oracle returns ki.

• Output: The adversaryA outputs a set of message/identifier pairs M = {(m1, id1), . . . , (m`, id`)}
and a tag tag. (We stress that all the pairs in M are required to be distinct.)

• Success determination: We say A succeeds if (1) Vrfyk1,...,kt
(M, tag) = 1 and (2) there

exists a pair (mi∗ , idi∗) ∈ M such that

1. A never queried Corrupt(idi∗), and

2. A never queried Mac(idi∗ ,mi∗).

We say that the aggregate MAC scheme (Mac, Agg, Vrfy) is secure if for all t = poly(n) and all
non-uniform probabilistic polynomial-time adversaries A, the probability that A succeeds in the
above experiment is negligible.

We do not consider verification queries even though, in general, they may give the adversary
additional power [1]. This is justified by the fact that our eventual construction satisfies the
conditions stated in [1] for which verification queries do not give any additional power. (Of course,
they prove this only for the case of standard MACs but it is easy to see that their proof carries over
to our setting as well.) Note also that we need not allow “aggregate” queries, since the aggregation
algorithm Agg is unkeyed.

3 Constructing Aggregate MACs

In this section, we show that aggregate MACs can be constructed from essentially any standard
message authentication code. We begin by illustrating the idea using as a building block the simple
(standard) message authentication code constructed from a pseudorandom function F with output
length n as follows: Mack(m) = Fk(m). In this case, given tags tag1, . . . , tag` associated with
message/identifier pairs (mi, i), respectively, we can aggregate these tags by simply computing the
XOR of all the tag values; i.e.,

tag = tag1 ⊕ tag2 ⊕ · · · ⊕ tag`.

(For simplicity, we consider identifiers 1, . . . , ` above. However, as we will see in the formal descrip-
tion below, these identifiers need not be distinct.) Verification is carried out in the obvious way:
given a set of message/identifier pairs M = {(m1, 1), . . . , (m`, `)} and tag, the receiver outputs 1 if
and only if

tag =
⊕̀

i=1

Fki(mi).

As for the security of this scheme, we may argue informally as follows: say an adversary outputs
{(m1, id

′
1), . . . , (m`, id

′
`)} and tag such that there exists an i for which A did not query either

Corrupt(id′i) or Mac(id′i,mi). Let i∗ = id′i. Then, from the point of view of the adversary, the value
Fki∗ (mi) looks random. Since XORing a random(-looking) value with any other (uncorrelated)
strings yields a random(-looking) string, we see that the value

⊕`
i=1 Fkid′

i

(mi) computed by the
receiver also looks random to the adversary, and cannot be guessed by the adversary with probability
much better than 2−n. We conclude that tag is a valid forgery with probability only negligibly better
than 2−n, and so the adversary does not succeed in outputting a valid forgery except with negligible
probability.
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Extending the above ideas, we may realize that the proof does not require the individual MAC
tag Fki∗ (mi) to be pseudorandom, but instead only requires that it be unpredictable. But this holds
for any secure (standard) MAC, by the definition of security for MACs. Thus, as far as security
is concerned, the above approach works for any underlying MAC. On the other hand, verification
in the aggregate MAC requires that verification in the underlying MAC be done by re-computing
the MAC tag and checking equality with what is received. (I.e., Vrfyk(m, tag) outputs 1 if and
only if Mack(m) = tag.) We may assume, without loss of generality, that verification is done this
way for any deterministic MAC; for randomized MACs (and, in particular, MACs where messages
have more than one valid tag for a given key), however, verification cannot be done this way.
This means that certain randomized MACs (e.g., XOR-MAC [2]) cannot be utilized directly in
the above construction, although we remark that any randomized MAC could be “derandomized”
using a pseudorandom function. In any case, most commonly-used MACs are deterministic, and
thus the restriction is not a serious one.

We now describe our aggregate MAC scheme formally, and rigorously prove its security with
respect to Definition 2. Let (Mac, Vrfy) denote a standard message authentication code where Mac
is a deterministic algorithm. (We will ignore the Vrfy algorithm from now on since, as noted above,
we can perform verification by simply re-running Mac.) We have the following construction:

Construction 1 (Aggregate MAC Scheme)
Let Mac be a deterministic algorithm. We define (Mac∗, Agg∗, Vrfy∗) as follows:

• Algorithm Mac∗: upon input k ∈ {0, 1}n and m ∈ {0, 1}∗, outputs Mack(m).

• Algorithm Agg∗: upon input two sets M1,M2 of message/identifier pairs and two tags
tag1, tag2, the algorithm outputs tag = tag1 ⊕ tag2.

• Algorithm Vrfy∗: upon input a set of keys k1, . . . , kt ∈ {0, 1}n and a set M = {(m1, i1), . . .,
(m`, i`)} of message/identifier pairs where i` ∈ {1, . . . , t} for all `, algorithm Vrfy∗ computes
tag′ =

⊕`
j=1 Mackij

(mj), and outputs 1 if and only if tag′ = tag. (We stress that the input
to Vrfy∗ is taken to be a set, and so all the tuples in M are distinct.)

It is easy to verify correctness of the above scheme. As for security, we have:

Theorem 1 If (Mac, Vrfy) is existentially unforgeable under an adaptive chosen-message attack
and Mac is deterministic, then (Mac∗,Agg∗, Vrfy∗) given in Construction 1 is a secure aggregate
message authentication code.

Proof: Fix a probabilistic polynomial-time adversary A and some t = poly(n) as in Defini-
tion 2. We construct a probabilistic polynomial-time algorithm F that interacts with an instance
of (Mac, Vrfy) and attempts to produce a valid forgery for a previously-unauthenticated message.
F is given access to an oracle Mack∗(·) for an unknown key k∗, and proceeds as follows:

1. It chooses a random i∗ ← {1, . . . , t(n)}.
2. For i = 1 to t(n):

(a) If i 6= i∗, choose ki ← {0, 1}n.

(b) If i = i∗, do nothing (however, we implicitly set ki∗ = k∗).

3. Run A(1n), answering its queries as follows:

6



Query Mac(i,m): If i 6= i∗ then F answers the query using the known key ki. If i = i∗ then
F queries its own MAC oracle Mack∗(·) and returns the result.

Query Corrupt(i): If i 6= i∗ then give A the known key ki. If i = i∗ then abort.

4. At some point, A outputs M = {(m1, id
′
1), . . . , (m`, id

′
`)} and tag. Let j be the first index

such that (1) A never queried Corrupt(id′j) and (2) A never queried Mac(id′j , mj). (We assume
without loss of generality that some such j exists.) If id′j 6= i∗ then abort; otherwise, proceed
as described below.

5. Assuming id′j = i∗, algorithm F computes

tag∗ = tag ⊕

⊕

i6=j

Mackid′
i
(mi)


 ,

where F computes Mackid′
i

(mi) using the known key kid′i when id′i 6= i∗, and computes

Macid′i(mi) by querying its MAC oracle Mack∗(·) when id′i = i∗. Finally, F outputs (mj , tag
∗).

The proof follows easily from the following observations:

• The probability that F aborts is exactly 1/t(n), which is inverse polynomial. Furthermore,
conditioned on not aborting, the simulation that F provides for A is perfect.

• If A succeeds in a given execution (and F does not abort), then F outputs a valid forgery.
To see this, note that when A succeeds this means that

⊕̀

i=1

Mackid′
i
(mi) = tag,

where we stress that Mackid′
i
(mi) is a fixed, well-defined value by virtue of the fact that

Mac is deterministic. Thus, the value tag∗ output by F is equal to the (well-defined) value
Macki∗ (mj) = Mack∗(mj). Furthermore, F has never queried its own MAC oracle with the
message mj since, by assumption, A never queried Mac(i∗,mj) prior to step 5 of F ’s execution,
above, and F will not query mj to its MAC oracle in step 5 since all tuples in the set M must
be distinct.

This completes the proof.

Efficiency. Our construction for aggregate MACs is highly efficient. Consider the example of a
mobile ad-hoc networks (MANET) as described in the introduction. If the nodes are arranged as a
binary (or any other) tree, then each node receives a set of messages together with a single tag from
each of its children. In order to forward the messages on, all the node needs to do is to concatenate
the lists of messages, compute its own MAC, and XOR all the tags together.

4 An Extension and a Lower Bound

A limitation of the construction given in the previous section is that the receiver must re-compute
the (individual) MAC tags on all ` messages whose tags have been aggregated. This is not a
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limitation in the MANET example given above. However, in some cases, the receiver may only be
interested in verifying the authenticity of a single message (or some small subset of the messages).
In such cases, the requirement to re-compute the MAC tags of all the messages is undesirable.

In this section, we present a simple idea that offers a trade-off between the length of the aggregate
tag and the time required to verify a single message. To achieve authentication of a single message
in constant time (i.e., independent of the number of aggregated tags `), our approach yields a tag
of length O(` ·T ), where we take T to be the length of the tag in some underlying (standard) MAC.
This is not of much interest because we can achieve a tag of length O(` · T ) by just concatenating
the tags of a standard MAC (i.e., aggregation equals concatenation). However, our approach
yields a tradeoff where the product of the authentication time and tag length is O(` · T ). In
the previous section, we achieved authentication in time ` with a tag of length T . At the other
extreme, concatenating MAC tags gives authentication in constant time (i.e., requires verifying
a single MAC) but has a tag of length ` · T . Our approach, described below, allows essentially
anything in between. In particular, one can achieve authentication in time O(

√
`) with a tag of

length O(
√

` · T ).
It is interesting to wonder whether this is optimal. In this direction, we also present a lower

bound showing that this approach is asymptotically optimal (up to a multiplicative factor of T )
when considering verification that takes constant, or at most logarithmic, time. That is, we show
that any aggregate MAC scheme that enables authentication in logarithmic time (in `, the number
of aggregated MACs) must have a tag of length at least Ω(`).

We stress that in this section, we consider the running time as a function of the number ` of
messages. Of course, it also takes time to compute and verify a single MAC tags. However, this is
a fixed overhead for every value of the security parameter, and so what is really of interest is how
many MAC tags need to be computed to verify a single message, when the number of aggregated
MACs is `.

4.1 The Construction

Before presenting our construction, we first describe the problem in a bit more detail. Recall
from Definition 1 that the receiver holds a set of keys k1, . . . , kt, and is assumed to receive a set of
message/identifier pairs M = {(m1, id1), . . ., (m`, id`)} and a tag tag. In this section, we assume the
receiver does not care to simultaneously verify the authenticity of all messages in M (with respect to
the identifier associated with each message) as in the previous section, but instead is interested only
in verifying authenticity of one of the messages mi (with respect to the associated identifier idi).
Obviously, the only solutions of interest are those that are more efficient than verifying everything.

A fairly straightforward solution is as follows. Fix some parameter `′. Then run multiple in-
stances of the “base aggregation scheme” from the previous section in parallel, but only aggregating
at most `′ messages/tags using any given instance. (We stress that each sender still holds only one
key, the verifier still holds one key per sender, and the Mac∗ algorithm is unchanged. All that
changes is the way aggregation and verification are performed.) The net result is that a set of mes-
sage/identifier pairs M = {(m1, id1), . . ., (m`, id`)} is now authenticated by a sequence of `∗ = d`/`′e
tags tag1, . . . , tag`∗ generated according to the base scheme, where tag1 authenticates m1, . . . , m`′

(with respect to the appropriate associated identities), tag2 authenticates m`′+1, . . . , m2`′ , etc. To
verify the authenticity of any particular message mi, the verifier need only re-compute MAC tags
for (at most) `′ − 1 other messages.

The tag when ` messages are authenticated is now the length of d`/`′e basic MAC tags (i.e.,
length d`/`′e · T ), and the time for verifying any particular message is improved to O(`′) (instead
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of O(`) as previously). Thus, for example, setting `′ =
√

` we obtain verification of time O(
√

`)
and a tag that is comprised of

√
` basic MAC tags. We remark that the time required to verify all

the messages is essentially the same as before. Achieving constant verification time for any single
message using this approach would result in a tag of (total) length linear in the number of messages
being authenticated. In particular, when `′ = 1 we obtain an “aggregate” scheme which simply
concatenates MAC tags of all the messages being authenticated.

4.2 A Lower Bound

As we have mentioned, when constant verification time is desired (i.e., `′ = 1 in the scheme of the
previous section), the result is a MAC tag that consists of ` basic MAC tags (i.e., the aggregation
works by just concatenating MAC tags). This is rather disappointing and it would be highly
desirable to improve this situation. In this section we show that it is impossible to achieve a better
result since the above is essentially optimal. Informally speaking, we show that if verification can
be carried out in constant time (or even in time O(log `)), then the tag must be at least Ω(`) bits
long.

Before proceeding further, we observe this does not contradict the positive result we obtained
above. This is because we must have T = ω(log n) (otherwise an adversary can guess a valid
MAC tag, in the underlying scheme, with non-negligible probability) and because `, the number
of aggregated MACs, can be at most polynomial in n (or else it does not make much sense to talk
about security of the scheme). Thus, the tag length of our previous construction when `′ = O(log `)
is T · `/ log ` = ω(log n) · `/O(log n) = ω(`),
as required. We now formally state and prove the lower bound:

Claim 1 Any aggregate MAC scheme in which verification of a single message can be carried out
in time O(log `) (where ` denote the total number of messages authenticated by an aggregate tag)
has tags whose length is Ω(`).

Proof: We begin by providing intuition as to why the claim is true. Assume that there exists
an aggregate MAC scheme where verification of a single message takes time log `, and the tags are
of length less than `. The main observation is that if verification takes time log `, then the Vrfy
algorithm can only read at most log ` of the messages whose MACs are aggregated. If each of these
messages consists of one bit only, then it is possible to try all possible combinations of the log ` bits
to see which passes verification (this takes time 2log ` = ` which is feasible). A key point here, of
course, is that only a correct combination should pass or this could be used to efficiently construct
a forgery of the aggregate MAC scheme. This implies that it is possible to reconstruct log ` of the
(single-bit) messages given only the MAC tag. However, this holds for all subsets of log ` bits and
so all of the messages can be reconstructed in polynomial-time given only the MAC tag. But this
means that it is possible to reconstruct any `-bit message from a tag of length less than `. Stated
differently, it means that an arbitrary `-bit message can be compressed, something that is known to
be impossible! Our formal proof follows this intuition with some minor changes, the main one being
that we show how to reconstruct one bit at a time rather than blocks of log ` bits. Furthermore, we
derive our contradiction through lower bounds for probabilistic communication complexity rather
than through compression; this is easier because of the negligible probability of error that exists
when working with any cryptographic primitive.

We will use the public random string model of communication complexity, where two parties
share a common random string and the question is how many bits must they communicate in
order to correctly compute a function f . Given a protocol Π, the error of this protocol is given
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by maxx,y {Pr[Π(x, y) = f(x, y)]} where the probability is taken over the parties’ common random
string as well as any internal randomness they might use. We let CCε(f) denote the minimum
number of bits need to compute f , where this minimum is taken over all possible protocols with
error at most ε. It is known that there exist functions f : {0, 1}` × {0, 1}` → {0, 1} for which
CCε(f) = Ω(`); the inner-product function IP (x, y) =

∑`
i=1 xiyi mod 2 is one example. See [10, 15]

for more on communication complexity.
Let (Mac∗,Agg∗, Vrfy∗) be an aggregate MAC scheme in which verification of any message can

be carried out in time O(log `). At the very least, this implies that given any set of messages M =
{m1, . . . , m`} and a single identifier id (using a single identifier just simplifies the proof), verification
of a single message mi (with respect to id) can be carried out by examining only w = O(log `) other
messages in M . (This is due to the fact that it is not possible to read more than log ` messages in
log ` time.) We show that such a scheme implies that the probabilistic communication complexity
(in the public random string model) of every function f : {0, 1}`×{0, 1}` → {0, 1} is essentially the
length of a tag for ` messages. However, since there exist functions with communication complexity
Ω(`) (see the discussion in the previous paragraph) it follows that the tag length must also be Ω(`).

We begin by describing a protocol for computing any function f : {0, 1}` × {0, 1}` → {0, 1}
with communication complexity that is equal to the tag length plus 1. We stress that this protocol
is for the setting of communication complexity and not cryptography. Thus, the parties A and B
are fully honest and the only question is how many bits must be sent (there is no requirement on
privacy, etc.). Loosely speaking, the protocol we describe works by having A compute an aggregate
MAC on her input and then send the tag to B. Party B then reconstructs A’s input from the tag,
as described in the intuitive discussion above. Finally, given A’s full input, B computes the output
and sends it to A.

Before formally describing the protocol, we show how to encode a single `-bit input into an
aggregate MAC over ` messages. Let x = x1 · · ·x` be A’s input. Then, A defines messages
m1, . . . , m` by mi = 〈i〉‖xi, where 〈i〉 is the binary encoding of i. The set {m1, . . . ,m`} is a valid
encoding of x because it fully defines x (all bits of x are represented, and their positions in x are
given by the encoding of j that is included in every mj). We remark that since only one id is used
here, we ignore it from here on. We now describe the protocol:

Protocol 1 (communication complexity protocol for any function f)

• Inputs: A has x ∈ {0, 1}` and B has y ∈ {0, 1}`.

• Public random string: both parties share a random string k ∈ {0, 1}n for some sufficiently
large n.

• The protocol:

1. A’s first step:

(a) Party A encodes its input x = x1 · · ·x` into a set of ` messages M = {m1, . . . , m`}
where mi = 〈i〉‖xi for every i.

(b) A computes tagi ← Mac∗k(mi) for all i, and then aggregates all the results into a
single tag tag∗ by using the algorithm Agg∗.

(c) A sends tag∗ to B.

2. Upon receiving tag∗ from A, party B works as follows for i = 1, . . . , `:
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(a) B sets mi = 〈i〉‖0 (this can be viewed as a guess that xi = 0) and attempts to run
Vrfy∗k(M, tag∗). However, Vrfy∗ expects to receive M and in general may read up to
log ` other messages in M .3 Therefore, B proceeds as follows:

(b) Let Vrfy∗k((j1,mj1), . . . , (jt, mjt), tag∗) be the algorithm defined by Vrfy∗ after it has
read the t messages indexed by j1, . . . , jt with content mj1 , . . . , mjt; note that mi

is not included in this notation as we assume it is read first. (Essentially, this
algorithm is defined by fixing the prefix of its execution until this point.)

(c) For t = 0, . . . , log `, B works as follows:
i. If t = `, then return the output bit of

Vrfy∗k((j1,mj1), . . . , (jt,mjt), tag
∗)

ii. Else , invoke Vrfy∗k((j1,mj1), . . . , (jt,mjt), tag∗) and let jt+1 be the next message
read by Vrfy∗k((j1,mj1), . . . , (jt,mjt), tag∗).

iii. Recursively invoke Vrfy∗k((j1,mj1), . . . , (jt,mjt), (jt+1, 0), tag∗)
and Vrfy∗k((j1, mj1), . . . , (jt,mjt), (jt+1, 1), tag∗), and return the logical OR of
their outputs.

If the output of Vrfy∗ from the above procedure equals 1, then B sets xi = 0. Other-
wise, it sets xi = 1.

3. Given x = x1, . . . , x`, B computes f(x, y) and returns the result to A.

4. Both parties output f(x, y).

Note that B’s procedure is such that if any of the recursive threads returns 1 then B sets xi = 0.
However, if this occurs, then this means that there exists a subset of log ` messages mj1 , . . . ,mjlog `

such that Vrfy accepts mi = 〈i〉‖0 relative to this subset. On the other hand, if this does not occur,
then Vrfy rejects for all such sets, in which case B sets xi = 1.

It is clear that if B reconstructs x correctly then the protocol is correct. It therefore remains to
show that B correctly reconstructs x except with negligible probability. (Actually, in the context of
communication complexity it suffices to show that this holds except with some constant probability.
However, we show something stronger.)

We separately analyze the case that xi = 0 and xi = 1. In the case of xi = 0 we have that A
generated tag∗ with xi = 0 and some setting of the other bits. Therefore, there must exist some
subset of log ` messages that results in Vrfy accepting (this subset is defined by A’s real input x).
Thus, when xi = 0, party B always sets xi = 0. (This follows from the correctness condition of
MACs that states that if a tag is correctly constructed, then Vrfy will always output 1.)

The more challenging case is that of xi = 1. Assume that there exists a message x = x1, . . . , x`

and an i such that with probability p, party B’s procedure on an aggregate tag tag∗ computed
from x is such that xi = 1 but B sets x′i = 0. We use this to construct an adversary A that breaks
the MAC scheme (Mac∗,Agg∗, Vrfy∗) with probability p/`.4 Adversary A encodes x into a set M
exactly as party A does. It then uses its Mac∗ oracle to compute an aggregate MAC on the set of
` messages M ; let tag∗ be the result. Next, A chooses uniformly distributed bits b1, . . . , b` ∈ {0, 1}
and constructs a new set M ′ where m′

i = 〈i〉‖0 and for all j 6= i, m′
j = 〈j〉‖bj . Finally, A outputs

the set M ′ and the tag tag∗. (We note that A uses oracles whereas the party A used the public
3Without loss of generality we assume that Vrfy first reads mi and then up to log ` other messages.
4We are being slightly informal here. What we prove is that for a given n and pair (x, i), a non-uniform adversary

will succeed in breaking the MAC scheme with probability that is polynomially related to the probability that B’s
procedure errs regarding the ith bit. This will then imply that for all sufficiently large n’s, the probability p = p(n)
must be negligible, as required.
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random string k. However, party A’s procedure does not use k in any way except to compute Mac∗

legitimately and so A can simulate this using its Mac∗ oracle.)
We claim that A succeeds in breaking the MAC scheme with probability p/`. This is due to

the following facts:

1. The set M ′ is such that A never queried Mac(m′
i) (because mi = 〈i〉‖1 but m′

i = 〈i〉‖0).

2. A did not send any Corrupt queries

3. With probability 2− log ` = 1/` the random bits chosen by A that are read by Vrfyk are equal
to those that result in B’s procedure erring. Therefore,

Prob[Vrfy∗k(M
′, tag∗)] =

p

`
.

We conclude that A succeeds in its attack with probability p/`, implying that p must be negligible
(by the assumption that the scheme is secure). This implies that Protocol 1 (probabilistically)
computes f with communication complexity |tag∗|+ 1. Since there exist functions f for which the
communication complexity is Ω(`), this therefore implies that |tag∗| = Ω(`) as required.

We conclude by remarking that it is actually only required that the adversary A run in
polynomial-time in order to reach a contradiction regarding the MAC. In contrast, B can run
in time 2` and this makes no difference (the bounds in communication complexity hold irrespective
of the computational complexity of the parties). The crucial point is that A does not run B and
so its complexity does not depend on B. Thus B could just try all 2` strings to see if one results in
the MAC being accepted. The probability of A generating a successful forgery remains the same
because it is simply based on a random guess.

In summary, it is not possible to do (much) better than our solution of the previous section
when constant- or logarithmic-time verification is required. An interesting question remains as
to whether it is possible to do better than the tradeoff achieved by our construction when `′ is
asymptotically larger than log `. It would also be interesting to close the remaining multiplicative
factor of T (the tag length of the underlying MAC).
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