Threshold Signatures
Part 3: Quantum Resistant Schemes
Bar-Ilan University Winter School on Cryptography

Rosario Gennaro
A universal thresholdizer

How to thresholdize any scheme

We are going to show how to use Threshold Fully Homomorphic Encryption (TFHE) to build a universal thresholdizer: a compiler that takes any cryptographic scheme and builds a non-interactive threshold version of it.
Recall FHE

Let’s recall the GSW13 FHE Scheme

- The secret key is a vector $sk \in \mathbb{Z}_q^l$
- A ciphertext is a matrix $ct \in \mathbb{Z}_q^{l \times m}$
- To decrypt we take the inner product of a column ct^k of ct with sk
 - If $d = <ct^k, sk>$ is small then the plaintext bit is 0 otherwise is 1

- A n-out-of-n scheme follows:
 - Split $sk = sk_1 + \ldots + sk_n$
 - Party i outputs $d_i = <ct^k, sk_i> + \text{noise}$
 - The noise is needed to hide the secret share from reconstruction
 - $d \sim d_1 + \ldots + d_n$
Threshold FHE

The problem with threshold

- If we split sk with Shamir
- Let $[sk_1 \ldots sk_n]$ be the shares
- If Party i outputs $d_i = \langle ct^k, sk_i \rangle + \text{noise}$
 - When we interpolate with the Lagrangians $\sum_{i \in S} \lambda_{i,S} d_i$
 - The noise is the combination is not guaranteed to be small anymore
- d is very far from $\sum_{i \in S} \lambda_{i,S} d_i$
First solution

Use Linear Secret Sharing with binary coefficients

- We split sk with a secret sharing scheme
 - Which is linear (so that we can still easily compute the inner product)
 - And reconstruction involves only 1/0 coefficients
- Let $[sk_1 \ldots sk_n]$ be the shares
- Party i outputs $d_i = <ct^k, sk_i> + \text{noise}$
 - We then reconstruct $\sum_{i \in S} \beta_{i,S} d_i$
 - $d \sim \sum_{i \in S} \beta_{i,S} d_i$
 - Since the combined noise is small (because $\beta_{i,S}$ is binary)
First solution

How expressive are \{0,1\}-LSSS

- It turns out that they are quite expressive
 - They include threshold access structures

- The drawback is that they are not very efficient
 - For \(n\) players the shares grow as \(n^4\)
Second Solution

Grow the parameters to accommodate the noise

- Split sk with Shamir
- Let $[sk_1 \ldots sk_n]$ be the shares
- Party i outputs $d_i = \langle ct^k, sk_i \rangle + noise$
 - Remove the denominators to make the Lagrangian integers
 - $\sum_{i \in S} \lambda_{i,S} n!d_i$
- Choose LWE parameters large enough to accommodate the noise growth

- The issue now is that the parameters of the FHE are dependent on n
Thresholdize everything

A universal thresholdizer

- **Setup**: Given a secret k it outputs shares $[k_1 \ldots k_n]$ and a verification key VK
- **Eval**: on input a circuit $C(.,.)$, input x and share k_i
 - It outputs a partial evaluation y_i
- **Verify**: On input $C(.,.),x,VK,i,y_i$ it accepts or rejects
- **Reconstruct**: from $t+1$ accepted partial evaluations y_i it computes $y=C(k,x)$
A universal thresholdizer

Combine TFHE with NIZKs

- **Setup:**
 - The share of each party is defined as
 - sk_i the share of the TFHE
 - On input the secret k the verification key VK is defined as
 - $FHE(k), COM(sk_i)$

- **Eval:** on input a circuit $C(.,.)$, input x, VK and share sk_i
 - Each party evaluates $FHE(C(k,x))$ using the homomorphism of FHE
 - Then it produces y_i as
 - the partial decryption under sk_i for the TFHE +
 - a NIZK of correctness wrt VK,C

- **Verify:** checks the NIZK

- **Reconstruct:** uses the reconstruction procedure of the TFHE
A universal thresholdizer

Applications

If k is the secret key for a cryptographic scheme and C is the circuit expressing the cryptographic computation, we obtain 1-round threshold version of any scheme.

One interesting application is the “compression” of the non-succinct Shamir-based TFHE we showed earlier:

- Our Shamir-based TFHE scheme had parameters growing with n.
- We can build a non-succinct universal thresholdizer using this non-succinct TFHE scheme.
- But then this UT can be used to thresholdize a succinct FHE.
 - Reminds me of the boosting step for FHE.
Let’s talk about isogenies

Hard Homogenous Spaces

- A set \mathcal{E} endowed with a group action G
 - If $g \in G$ and $E \in \mathcal{E}$ there is an operation $g^*E = E' \in \mathcal{E}$
 - Hard problems:
 - Given E, E' find g such that $g^*E = E'$ (discrete log)
 - Given $E, E' = g^*E, F$ find $F' = g^*F$ (CDH)
- The main difference with cyclic groups and discrete log based schemes is that there is no “structure” on the set \mathcal{E}
 - Which is the source of the conjecture quantum hardness
- In isogeny-based instantiations
 - \mathcal{E} is a set of elliptic curves
 - The operation $*$ brings you from one curve to another
Let’s talk about isogenies

A signature scheme based on HHS

- A rift on Schnorr’s. Let E be a “base” curve and assume $G = (\mathbb{Z}_q, +)$
- Alice knows $g \in G$ such that $F = g \cdot E$
- To prove this in ZK she runs the following protocol:
 - She chooses $a \in G$ at random and sends $F' = a \cdot E$
 - The verifier sends a bit b
 - If $b = 0$
 - Alice answers with $c = a$
 - The verifier checks that $c \cdot E = F'$
 - If $b = 1$
 - Alice answers with $c = ag^{-1}$
 - The verifier checks that $c \cdot F = F'$
- This proof can be turned into a signature scheme via the Fiat-Shamir heuristic
Let's talk about isogenies

A threshold signature scheme based on HHS

- Alice knows $g \in G: F=g \cdot E$
 - $a \in G$ sends $F'=a \cdot E$
 - The verifier sends a bit b
 - If $b=0$
 - Alice answers $c=a$
 - Verifier checks $c \cdot E = F'$
 - If $b=1$
 - Alice answers $c=ag^{-1}$
 - Verifier checks $c \cdot F = F'$

- Assume a dealer has shared g via Shamir among n parties with threshold t
- When $t+1$ parties want to sign they map their shares to additive ones $g = g_1 + \ldots + g_{t+1}$
- Each party selects a random value a_i
 - The computation of F' is performed sequentially
 - The first party computes $F_1=a_1 \cdot E$
 - Each next party i computes $F_i=a_i \cdot F_{i-1}$
 - $F'=F_{t+1}$
 - Compute the challenge b via hashing
 - Each party outputs $c_i=a_i \cdot g_i$
 - And $c = c_1 + \ldots + c_{t+1}$

Note the sequential computation
You cannot combine two separate isogeny computations
Let’s talk about isogenies

A DKG for isogenies

- Assume a dealer has shared g via Shamir among n parties with threshold t
- When $t+1$ parties want to sign they map their shares to additive ones $g = g_1 + \ldots + g_{t+1}$
- Each party selects a random value a_i
 - The computation of F' is performed sequentially
 - The first party computes $F_1 = a_1 \cdot E$
 - Each next party i computes $F_i = a_i \cdot F_{i-1}$
 - $F' = F_{t+1}$
- Compute the challenge b via hashing
- Each party outputs $c_i = a_i \cdot g_i$
- And $c = c_1 + \ldots + c_{t+1}$

- The generation of the nonce can be used as a DKG
- As in FROST
 - Use the same ZK proof to prove knowledge of the contribution
 - Malicious security with abort

Daniele Cozzo, Nigel P. Smart: Sashimi: Cutting up CSI-FiSh Secret Keys to Produce an Actively Secure Distributed Signing Protocol. PQCrypto 2020: 169-186
Let’s talk about isogenies

A Robust DKG for isogenies

- What if we want robustness (guaranteed termination)
 - With honest majority
- Note that in the setting of isogenies there is no equivalent of a Pedersen’s VSS
 - Since it require combining two separate isogeny computations
- It is possible however for each party to do a non-malleable VSS via ZK proofs
 - Providing the non-malleable and recoverable properties of the commitment that we need to make the joint-VSS work
- The combination of the secret keys into a unique public key however remains sequential
A non-exhaustive list of open problems

- DKG: truly scalable, without quadratic communication
 - Can we use recent advances in SNARKs?
- Better proofs:
 - We have UC proofs for Threshold DSA
 - FROST has a proof for concurrent security but not a full UC proof
- How inefficient is the FHE based UT?
 - FHE has been making great strides. At what point it pays off to build threshold schemes just by calling (a tailored version of) UT?
 - A similar question can be made for MPC
- Can we have threshold isogeny-based schemes without having to pay sequential rounds?