Oblivious Computation
Part III - OptORAMa

Gilad Asharov
Bar-Ilan University

The 12th Bar-Ilan Winter School on Cryptography
Advances in Secure Computation
Access Patterns Reveal Information!

secure processor
Access Patterns Reveal Information!
Oblivious RAM Compiler: State of the Art

Lower bound: $\Omega(\log N)$
[GoldreichOstrovsky'96, LarsenNeilsen'18]

Hierarchical
[O90,GO96]
$O(\log N)$
Computational security
[OptORAMA’20]

Tree based ORAM
[Shi,Chan,Stefanov11]
$O(\log^2 N)$
Statistical security
[PathORAM,CircuitORAM]
OptORAMA

[Ashtarov, Komargodski, Lin, Nayak, Peserico, Shi’20]

There exists an ORAM with $O(\log N)$ worst-case overhead

🎉 Asymptotically Optimal! 🎉
- Computational Security (OWF)
 - Matches [LN’18]
- PRF -> Random Oracle
 - Statistical security
 - Matches [GO’96]

• Word size: $\log N$
• Client’s memory size $O(1)$ words
• Passive server
• Balls and bins model
• Large hidden constant
• Based on hierarchical ORAM
A Short Tutorial

Hierarchical Solution

\(O(\log^3 N), \ldots, O\left(\frac{\log^2 N}{\log \log N}\right)\)

[Ostrovsky’90],\ldots,[KLO12]

PanORAMa

\(O(\log N \log \log N)\)

Patel, Persiano, Raykova, Yeo’18

OptORAMa

\(O(\log N)\)
Hierarchical ORAM

[Goldreich and Ostrovsky 1996]
Non-Recurrent Hash Table

Build(x):

x is an array of pairs <addr, val>

Lookup(addr):

If \(\text{addr} \in x \), return \(\text{val} \); otherwise return \(\bot \)

Also supports “dummy lookups” (addr = \(\bot \))

Security holds as long as each addr is looked up at most once!
Non-Recurrent Hash Table

- Balls into bins
- Each level has a PRF key K - mark ball $addr$ to bin $\text{PRF}_K(\text{addr})$

$\text{Build O}(n \log n), \text{Lookup O}(\log n \omega(1))$

Implementation:

$2n/\log^2 n$ bins of size $\log^2 n$
“Bin Packing”
Lookup

- **Lookup**(addr): visit bin PRFK(addr) and scan for addr
- **Lookup**(dummy): visit and scan a random bin

Simulate Build: Oblivious sorts - easy
Simulate Lookup: Each Lookup() -> scan a random bin

Cost: Build — $O(n \log n)$, each lookup $O(\log^2 n)$

It is guaranteed that we do not look for the same addr twice!
Hierarchical ORAM

[Goldreich and Ostrovsky 1996]
Access (op, addr, data*)

Phase I: Lookup

Phase II: Build

\[T_0 \quad 2^0 \]
\[T_1 \quad 2^1 \quad 2^2 \]
\[T_2 \quad \ldots \]
\[T_{\log N} \quad 2^{\log N} \]

- Ready: Blue
- Empty: Red
Access (op, addr, data*)

Phase I: Lookup

Perform \texttt{Lookup}(addr) in $T_1, \ldots, T_{\log N}$
If item found in T_i, then \texttt{Lookup}(\perp) in $T_{i+1}, \ldots, T_{\log N}$

Phase II: Build

$T_0 \quad 2^0$
$T_1 \quad 2^1$
$T_2 \quad 2^2$
$T_3 \quad 2^3$
\ldots
$T_{\log N} \quad 2^{\log N}$

ready
empty
Access (op, addr, data*)

Phase I: Lookup

If op=\textit{read}, then store the found item as v
If op=\textit{write}, then ignore the found item and use \(v = \text{data}^*\)

Phase II: Build

\[
\begin{align*}
T_0 & : \text{ready}^0 \\
T_1 & : 2^1 \\
T_2 & : 2^2 \\
T_3 & : 2^3 \\
\vdots & \\
T_{\log N} & : 2^{\log N}
\end{align*}
\]
Access \((\text{op}, \text{addr}, \text{data}^*)\)

Phase I: Lookup

Phase II: Build

Find the first empty level \(l\), and run \(T_l.\text{Build}(T_1 \cup \ldots \cup T_{l-1} \cup \{<\text{addr}, v>\})\)

Mark \(T_1, \ldots, T_{l-1}\) as empty and \(T_l\) as ready

Invariant: never query the same \(\text{addr}\) twice between two Rebuilds
Read(9)
Read(9)

\[T_0 \quad 2^0 \]
\[T_1 \quad 2^1 \]
\[T_2 \quad 2^2 \]
\[T_3 \quad (12,WLS) \quad (5,TLT) \quad (25,SPY) \quad 2^3 \]
\[\ldots \]
\[T_{\log N} \quad (27,ABC) \quad (9,BCD) \quad (11,RDT) \quad (32,TPO) \quad 2^{\log N} \]

Lookup(9)
Read(9)
Write(25,JRY)

\[T_0 \rightarrow (9,BCD) \rightarrow 2^0 \]
\[T_1 \rightarrow (12,WLS) \rightarrow (5,TLT) \rightarrow (25,SPY) \rightarrow 2^1 \]
\[T_2 \rightarrow (12,WLS) \rightarrow (5,TLT) \rightarrow (25,SPY) \rightarrow 2^2 \]
\[T_3 \rightarrow (12,WLS) \rightarrow (5,TLT) \rightarrow (25,SPY) \rightarrow 2^3 \]
\[\ldots \]
\[T_{\log N} \rightarrow (27,ABC) \rightarrow (9,BCD) \rightarrow (11,RDT) \rightarrow (32,TPO) \rightarrow 2^{\log N} \]
Write(25, JRY)
Rebuild

\[T_0 \quad 2^0 \]
\[T_1 \quad (25,\text{JRY}) \quad (9,\text{BCD}) \quad 2^1 \]
\[T_2 \quad (12,\text{WLS}) \quad (5,\text{TLT}) \quad (25,\text{SPY}) \quad 2^2 \]
\[T_3 \quad (11,\text{RDT}) \quad (32,\text{TPO}) \quad 2^3 \]
\[\ldots \]
\[T_{\log N} \quad (27,\text{ABC}) \quad (9,\text{BCD}) \quad (11,\text{RDT}) \quad (32,\text{TPO}) \quad 2^{\log N} \]
After Some More Accesses…
After Some More Accesses…

\[T_0 \]
\[T_1 \]
\[(25, JRY) \quad (9, BCD) \quad 2^1 \]
\[T_2 \]
\[(12, WLS) \quad (5, TLT) \quad (25, SPY) \quad 2^2 \]
\[T_3 \]
\[(11, RDT) \quad (32, TPO) \quad 2^3 \]
\[\ldots \]
\[T_{\log N} \]
\[(27, ABC) \quad (9, BCD) \quad 2^{\log N} \]
After Some More Accesses...

\[2 \log N \]

\[(5, \text{TLT}) \]
\[(25, \text{SPY}) \]
\[(12, \text{WLS}) \]
\[(32, \text{TPO}) \]
\[(9, \text{BCD}) \]
\[(27, \text{ABC}) \]
\[(11, \text{RDT}) \]
\[(2^2 \log N) \]

...
Total Cost - Basic Hierarchical ORAM

Lookup: perform lookup in $\log N$ levels, each requires $\log^2 N$

Rebuild: Rebuild level i every 2^i accesses, over N accesses:

$$\sum_{i=1}^{\log N} \frac{N}{2^i} \cdot 2^i \cdot \log 2^i = N \cdot \sum_{i=1}^{\log N} i \approx N \log^2 N$$

$$O(\log^3 N)$$

$$O(\log^2 N)$$

T_0, T_1, T_2, T_3, $T_{\log N}$
Improvements [GM’11, KLO’12]

Lookup: perform lookup in $\log N$ levels, each requires $\log^2 N$ effectively $O(1)$

Rebuild: Rebuild level i every 2^i accesses

Using hash tables on the bins themselves + stashes
From Hierarchical ORAM to PanORAMa

- **PanORAMa**: Rebuild HT for a *randomly shuffled* input in $O(N \log \log N)$
- All elements that were not visited - are still randomly shuffled in the eye of the adversary!

- **But…**
 - Each layer is shuffled, but the concatenation is not shuffled
 - PanORAMa showed how to “intersperse” arrays in $O(N \log \log N)$
PanORAMa

Non-Recurrent Hash Table

Intersperse

ORAM

Non-Recurrent Hash Table for shuffled inputs
Intersperse

I_0 \hspace{1cm} \text{Shuffled} \hspace{1cm} |I_0| = n_0

I_1 \hspace{1cm} \text{Shuffled} \hspace{1cm} |I_1| = n_1

Generate random Aux with n_0 zeros, n_1 ones \hspace{1cm} (n_0 + n_1 = n)

$0 \ 0 \ 1 \ 1 \ 1 \ 0 \ 1 \ 0$.

Oblivious route

\[
\binom{n}{n_0} \cdot n_0! \cdot n_1! = n!
\]

\[
n = n_0 + n_1
\]

Challenge: Move the elements **Obliviously**

PanORAMa: Implemented in $O(n \log \log n)$
Intersperse From Oblivious Tight Compaction

Generate random Aux

Tight compaction

0 0 1 1 1 0 1 0

Tight compaction⁻¹

0 0 0 0 1 1 1 1

Remember all “move balls”

Perform same “swaps”

Intersperse in $O(n)$!
Rebuilding Hash Tables in Linear Time

Weaker Primitive (But Suffices!) — Assumes Permuted Inputs
Warmup:
Goldreich and Ostrovsky

- Balls into bins
- Each level has a PRF key K - mark ball $addr$ to bin $PRF_K(addr)$

$\text{Build } O(n \log n), \text{ Lookup } O(\log n \omega(1))$
Build(X) where X is Randomly Permuted?

Is it secure?

No!

An adversary can distinguish between

n “dummy” lookups

n “real” lookups
OptORAMa: Build

1) Throw the n elements into $n/{\text{polylog}}(k)$ bins according to a PRF key K - reveal access pattern
2) Sample an independent (secret) loads of throwing $n' = n - n/{\text{log}} n$ balls into the bins
3) Truncate to the secret loads and pad with dummies; move truncated elements to overflow pile
4) Build each major bin using smallHT; build overflow pile using cuckoo hash

Bin size = polylog(k)

Dummies
Real
Major bins
$n - n/{\text{log}} n$ reals

Overflow pile
Merge all bins;
Extract reals by tight compaction
Exactly $n/{\text{log}} n$ real elements

Real
Dummies
OptORAMa: Build

1) Throw the n elements into n/polylog(k) bins according to a PRF key K - reveal access pattern
2) Sample an independent (secret) loads of throwing n' = n-n/log n balls into the bins
3) Truncate to the secret loads and pad with dummies; move truncated elements to overflow pile
4) Build each major bin using smallHT; build overflow pile using cuckoo hash
OptORAMa: Lookup

Lookup(addr):
Search in overflow pile;
If found - visit random bin
Otherwise - visit PRF_{K}(addr)
Security

Overflow pile (n/logn balls)

Build

Lookup

n-n/logn real

n-n/logn real balls
Security

Overflow pile (n/logn balls)

Dummies
Real
n-n/logn real

Build

Lookup
Security

Access pattern of (Build, Lookup) looks like two independent instances of balls-into-bins processes
ShortHT

Looking inside the bins
Packing - The Idea

• Given n balls each of size D bits, word size w
• Classical oblivious sort costs $O(\lceil D/w \rceil \cdot n \cdot \log n)$
• What if $D \ll w$?
• **Packing**: put w/D balls in one memory word!

• Can sort in time $O(D/w \cdot n \cdot \log^2 n)$

• When n and D are small (say $n = w^4$ and $D = \log w$), we
 can sort in linear time! $\left(\frac{n \log^2 n}{w} \leq n \quad \text{vs.} \quad n \cdot \log n \right)$
Where is it Being Used?
Where is it Being Used?

Each hash table is arranged as a sequence of “bins”
Each element resides in a random bin
The size of each bin is $n = \log^4 N$
Previously: build a structure on a bin using oblivious sort $n \log n \rightarrow \log \log N$ overhead
We can remove it using the packing trick
De-amortization of Ostrovsky and Shoup ‘97

We got a taste of \(O(\log N) \) overhead — in amortized

Some operations require much longer - \(O(N) \)

Can we get \(O(\log N) \) in worse-case?

Classic de-amortization technique of hierarchical ORAM is not compatible with OptORAMa and PanORAMa!
De-amortization Friendly Rebuild

Instead of “full / empty” -> “full / half full”
How Does it Help Us?

Easier to de-amortize: Looking at only two consecutive levels
De-amortizing Rebuild of Level i

$\begin{array}{cccc}
i-1 & HF & F & HF & F & HF & F & HF & F \\
i & HF & F & HF & F & HF & F & HF & F \\
\end{array}$

Build level i
Randomness Reuse
(PanORAMa / OptORAMa)

(27,ABC) (9,BCD) (11,RTD) (32,TPO)
Randomness Reuse
(PanORAMa / OptORAMa)

Elements that we did not touch are still randomly shuffled!!

PanORAMa and OptORAMa do not perform full Rebuild ->
Use the randomness from previous Rebuild

-> Reduced Rebuild from $O(n \log n)$ to $O(n)$ work
Main Challenge:

We might re-consume the randomness!
Main Idea

Two copies - same data in each level

Each level has an active copy, and a copy that is being rebuilt
Main Idea

A

Lookup

(22,JRY)

(25,SPY)

B

Rebuild

(22,JRY)

(25,SPY)
Main Idea

If the element is found -> put in both copies

Independent randomness!

See:
Asharov, Komargodski, Lin, Shi:
Oblivious RAM with Worst-Case Logarithmic Overhead, CRYPTO 2021
Conclusions

Lower bound: $\Omega(\log N)$
[GoldreichOstrovsky’96, LarsenNeilsen’18]

Hierarchical
[O90,GO96]

$O(\log N)$
Computational security
[OptORAMa’20]

Tree based ORAM
[Shi,Chan,Stefanov11]

$O(\log^2 N)$
Statistical security
[PathORAM,CircuitORAM]
References
Works mentioned in Part III

Goldreich, Ostrovsky:
Software Protection and Simulation on Oblivious RAM, JACM 1996

Ostrovsky, Shoup:
Private Information Storage, STOC 1997

Goodrich and Mitzenmacher:
Privacy-Preserving Access of Outsourced Data via Oblivious RAM Simulation, ICALP 2011

Kushilevitz, Lu, Ostrovsky:
On the (In)Security of Hash-Based Oblivious RAM and a New Balancing Scheme, SODA 2012

Patel, Persiano, Raykova, Yeo:
PanORAMa: Oblivious RAM with logarithmic Overhead, FOCS 2018

Asharov, Komargodski, Lin, Nayak, Peserico, Shi:
OptORAMa: Optimal Oblivious RAM, EUROCRYPT 2020

Asharov, Komargodski, Lin, Shi:
Oblivious RAM with Worst-Case Logarithmic Overhead, CRYPTO 2021
Thank You!