Oblivious Computation
Part II - Oblivious Sorts

Gilad Asharov
Bar-Ilan University

The 12th Bar-Ilan Winter School on Cryptography
Advances in Secure Computation
Access Patterns Reveal Information!
Models of Computation

Circuits

Emulate easily

$T^3 \log T$

[CR73,PF79]

$(T \gg N)$

RAM Model

Random Access Machine

CPU Operation

Memory access

Metrics:

Size (how many wires, gates)
Depth (parallelism)

Time
Size of the memory

T
N
Oblivious RAM Compiler: State of the Art

Lower bound: $\Omega(\log N)$

[GoldreichOstrovsky’96, LarsenNielsen’18]

Hierarchical

$O(\log N)$

Computational security

[OptORAMa’20]

Tree based ORAM

$O(\log^2 N)$

Statistical security

[PathORAM,CircuitORAM]
Example: Oblivious Sorts

- **Merge sort:** $O(n \log n)$
 - non oblivious

- **Bubble sort:** $O(n^2)$
 - oblivious

- **Other oblivious sorts?**
Oblivious Sorts

In the RAM Model

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Oblivous</th>
<th>Client Storage</th>
<th>Runtime</th>
</tr>
</thead>
<tbody>
<tr>
<td>Merge sort</td>
<td>No</td>
<td>$O(1)$</td>
<td>$2n \log n$</td>
</tr>
<tr>
<td>Bitonic sort</td>
<td>Yes</td>
<td>$O(1)$</td>
<td>$n \log^2 n$</td>
</tr>
<tr>
<td>AKS sort</td>
<td>Yes</td>
<td>$O(1)$</td>
<td>$5.4 \times 10^7 \times n \log n$</td>
</tr>
<tr>
<td>Zig-zag sort</td>
<td>Yes</td>
<td>$O(1)$</td>
<td>$8 \times 10^4 \times n \log n$</td>
</tr>
</tbody>
</table>

*constants of AKS, Zig-zag are from [Goodrich’14]

Z: poly log k

Most practical

For $n > 2^{30}$

x5 faster than Bitonic
Bucket Oblivious Sort

Oblivious Permute + Non-Oblivious Sort = Oblivious Sort

Merge-Sort
Bucket Oblivious Permute

- Interpret the input array as B buckets of size Z each ($Z=\text{poly} \log k$, $B=N/Z$, k is the security parameter)
- Assign to each element a random destination bin $[1,\ldots,B]$
- Add dummy bins

(We later remove these dummy elements using the non-oblivious sort)
Bucket Oblivious Permute

MergeSplit - takes all read elements in input buckets and distribute them to output buckets according to the ith MSB

Overflows?
Each bucket (in expectation) is “half full”
Oblivious Sorts

In the RAM Model

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Oblivious</th>
<th>Client Storage</th>
<th>Runtime</th>
<th>Error Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Merge sort [vonNeumann’45]</td>
<td>No</td>
<td>$O(1)$</td>
<td>$2n \log n$</td>
<td>0</td>
</tr>
<tr>
<td>Bitonic sort [Batcher’68]</td>
<td>Yes</td>
<td>$O(1)$</td>
<td>$n \log^2 n$</td>
<td>0</td>
</tr>
<tr>
<td>AKS sort [AKS’83]</td>
<td>Yes</td>
<td>$O(1)$</td>
<td>$5.4 \times 10^7 \times n \log n$</td>
<td>0</td>
</tr>
<tr>
<td>Zig-zag sort [Goodrich’14]</td>
<td>Yes</td>
<td>$O(1)$</td>
<td>$8 \times 10^4 \times n \log n$</td>
<td>0</td>
</tr>
<tr>
<td>Bucket oblivious sort [ACNPRS’20]</td>
<td>Yes</td>
<td>$O(1)$</td>
<td>$2n \log n$</td>
<td>$\approx e^{-Z/6}$</td>
</tr>
<tr>
<td>Bucket oblivious sort [ACNPRS’20]</td>
<td>Yes</td>
<td>$O(1)$</td>
<td>$\approx 2n \log n \log^2 Z$</td>
<td>$\approx e^{-Z/6}$</td>
</tr>
</tbody>
</table>

*constants of AKS, Zig-zag are from [Goodrich’14]
(Oblivious) Sorting Faster Than $O(n \log n)$?
(Oblivious) **Sorting Faster than** $O(n \log n)$?

"**No!** Such a result is not possible with **comparison-based**"

Knuth73: The Art of Computer Programming

Non-comparison based sorts? $(k - \text{length of the key})$

Radix-sort $O(k \cdot n)$, counting sort $O(2^k + n)$

RAM Model:

Radix sort, counting sort - make input-dependent memory accesses

Do not have equally efficient counterparts in the circuit model
What about the Circuit Model?

Can we go lower than $(k + w) \cdot \Omega(n \log n)$ circuit-size?

Comparator based?
- Any comparator-based sorting circuit must consume $\Omega(n \log n)$ comparators
- Even for $k = 1$ long key!

Stability?
- Stable sort requires $\Omega(n \log n)$ selector gates in the *indivisible* model, even for $k = 1$ [Lin, Shi, Xie19]

Assuming a well-known network conjecture, sorting circuits of size $(k + w) \cdot o(n \log n)$ do not exist for general k [Afshani, Freksen, Kamma, Larsen19]

No unconditional lower bound is known
\(n \): number of elements
\(k \): length of each key (#bits)
\(w \): payload (#bits)

\[(k + w) \cdot O(n \log n) \]

ignoring polylog terms

\[(k + w) \cdot O(nk) \]

Better for \(k \in o(\log n) \)

Not Comparison Based!

Not Stable!

Indeed worse than \(n \log n \) for general \(k \)
Tight Compaction
A Central Problem!

Tight Compaction

Circuit Model
- Linear size circuit (ignoring polylog* factors)
- (Almost) Linear size sorting circuit (short keys) [ALS’21]

RAM Model
- Linear time oblivious compaction
- Optimal Oblivious RAM compiler [OptORAMa, AKLNPS’20]
Tight Compaction

- **Input**: An array of size n where each element is marked 0 or 1
- **Output**: all 0-elements appear before 1-elements

- **RAM model? Trivial in O(n)**
 - Oblivious RAM model?
 - Deterministic: $O(n \log n)$ [AKS'83]
 - Open question from [LeightonMaSuel'95]
 - Reveals the number of 0's, randomized
 - Randomized: $O(n \log \log n)$
 - [MZ'14, LST'18] (negl error prob.)
 - **lower bound**: stable, indivisible, $\Omega(n \log n)$
 - [LST'18]

- **OptORAMa [AsharovKomargodskiLinNayakPessicoShi20]**:
 - Deterministic, $O(n)$, very large constant
 - Better constant [DittmerOstrovksy20]
 - $O(n)$ work, depth $O(\log n)$
 - [AsharovKomargodskiLinPessicoShi20]
Linear size circuit (ignoring polylog* factors)

- \(O(nw) \cdot \text{poly log}^* n \) size circuit
- Compacting \(n \) balls of size \(w \) each

Not comparison based

Not stable

Balls and bins model

Metadata is computed using bit-slicing tricks
1) Simple, randomized oblivious tight compaction (RAM model) in $O(n \log \log k)$
 Lin, Shi, Xie: Can we Overcome the $n \log n$ Barrier for Oblivious Sorting? SODA’19

2) Linear size compaction circuit
 Asharov, Lin, Shi: Sorting Short Keys in Circuits of Size $o(n \log n)$, SODA’21

3) Linear time algorithm for oblivious tight compaction in the RAM model
 Asharov, Komargodski, Lin, Nayak, Pesci and Shi: OptORAMa, Optimal Oblivious RAM, EUROCRYPT’20
Simple Oblivious Tight Compaction
[Lin, Shi, Xie, SODA’19]

0 1 1 0 0 1 0 1 0 0 1 1 0 0 0 1 0 0 1 0 1 1 0 0 1 0 1 0 1 1 0 1 0 1 1 1

1) Interpret the array as n/Z bins of size Z each
Simple Oblivious Tight Compaction
[Lin, Shi, Xie, SODA’19]

1) Interpret the array as n/Z bins of size Z each

\[
\begin{array}{cccccc}
0 & 1 & 1 & 0 & 0 & 1 \\
1 & 0 & 0 & 1 & 1 & 0 \\
0 & 1 & 0 & 0 & 1 & 0 \\
1 & 0 & 0 & 1 & 0 & 1 \\
0 & 1 & 0 & 1 & 1 & 1
\end{array}
\]

2) Random shift cycle for each row

\[Z \in \text{polylog}(k) = \log^6 k\]
Simple Oblivious Tight Compaction
[Lin, Shi, Xie, SODA’19]

1) Interpret the array as \(\frac{n}{Z} \) bins of size \(Z \) each

\[
\begin{array}{cccccccc}
0 & 1 & 1 & 0 & 0 & 1 & 0 & 1 \\
1 & 0 & 0 & 1 & 1 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 1 & 0 & 1 & 1 \\
1 & 0 & 1 & 0 & 1 & 1 & 1 & 0 \\
\end{array}
\]

\[
Z \in \text{polylog}(k) = \log^6 k
\]

2) For each row, perform random shift cycle

\[
\begin{array}{cccccccc}
0 & 1 & 0 & 0 & 1 & 1 & 0 & 1 \\
0 & 0 & 1 & 1 & 0 & 0 & 1 & 0 \\
1 & 0 & 1 & 0 & 0 & 1 & 1 & 1 \\
0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 \\
\end{array}
\]

\(O(n) \)
Simple Oblivious Tight Compaction
[Lin, Shi, Xie, SODA’19]

1) Interpret the array as n/Z bins of size Z each

2) For each row, perform random shift cycle

3) Sort each column independently

$$Z = \log^6 k$$

$$\frac{n}{Z} \cdot Z \log^2 Z = O(n \log^2 Z) \in O(n \log \log k)$$
Simple Oblivious Tight Compaction
[Lin, Shi, Xie, SODA’19]

Claim:
W.h.p, there exists a mixed stripe of size $Z/\log^2 k = \log^4 k$ rows

1) Interpret the array as n/Z bins of size Z each
2) For each row, perform random shift cycle
3) Sort each column independently
4) copy the mixed stripe to some working array of size $\frac{n}{\log^6 k} \cdot \log^4 k = n/\log^2 k$
5) Sort (obliviously!) the mixed stripe; write it back
1) Interpret the array as n/Z bins of size Z each
2) For each row, perform random shift cycle
3) Sort each column independently
4) Copy the mixed stripe to some working array of size $\frac{n}{\log^6 k} \cdot \log^4 k = \frac{n}{\log^2 k}$
5) Sort (obliviously!) the mixed stripe; write it back

When $n \in O(k)$, the algorithm is statistically secure and runs in $O(n \log \log n)$
1) Simple, randomized oblivious tight compaction (RAM model) in $O(n \log \log k)$
 Lin, Shi, Xie: Can we Overcome the $n \log n$ Barrier for Oblivious Sorting? SODA’19

2) Linear size compaction circuit
 Asharov, Lin, Shi: Sorting Short Keys in Circuits of Size $o(n \log n)$, SODA’21

3) Linear time algorithm for oblivious tight compaction in the RAM model
 Asharov, Komargodski, Lin, Nayak, Peserico and Shi: OptORAMa, Optimal Oblivious RAM, EUROCRYPT’20
Our Cost Model

Generalized Boolean gates

w-selector gates

Selector

Reverse Selector

"Reverse" selector
Oblivious Tight Compaction

- **Input**: An array of size n where each element is marked 0 or 1
- **Output**: all 0-elements appear before 1-elements

(1) Count the number of balls marked 0

(2) Mark the elements that are “misplaced”

Observation: number of reds always equals number of blues
We just have to swap them!
Loose Swap

Bipartite Expander Graph
- $O(1)$ degree
- Constant spectral expansion
Loose Swap

1 that wants to swap with 0
0 that wants to swap with 1

For every pair of

\[O(nd^2) \text{ boolean gates} \]
\[O(n \cdot d^2) \text{ w-selector gates} \]

\[O(nw) \text{ gates total} \]
Claim

At the end of this procedure, there are no more than $n/100$ remaining swaps.

- Consider the sets of “survivors”
- Each of size $> n/200$
 (Recall $#\text{reds}=#\text{blues}$)
- Their sets of neighbors must be disjoint

- Expansion property:
 for any set of size $> n/200$, number of neighbors $> n/2$
Loose Swap

Loose Compactor

Loose Compaction

Tight Compaction
Loose Swap

Loose Compactor

Recurse
Loose Swap

Loose Compactor

Recurse
Loose Swap

Reverse Route

Recurse

L

R

1%
What Do We Have So Far?

Loose Swap + Loose Compactor \implies Tight Compactor

$O(nw)$ $\quad O(n \cdot f(n) + nw)$ $\quad O(n \cdot f(n) + nw)$
Loose Compactor

Bipartite Expander Graph

- $O(1)$ degree
- Constant spectral expansion

Two stages:

- Find which edges will be chosen
- Find a matching (routes)
- Route elements on those edges

$O(n \log n)$ boolean gates

$O(n)$ w-selector gates

$O(n \log n + nw)$ boolean gates

$\leq 1\%$ are marked

Non comparison based!
Find a Matching

Repeat $\log n$ times:

- All blue red in L: propose to all incident vertices
- R: accept only if 1 proposal received, else reject all
- All blue red in L: if received “accept” become

$O(n \log n)$ boolean gates

Each edge has an indicator (a wire) whether to “route” an element on it

Offline route-finding does not depend on the payload!
Route

On all marked edges:
• Move an element
 Requires $O(n)$ w-selector gates

$O(n \log n)$ Boolean gates

Overall circuit requires $O(n \log n + nw)$ Boolean gates
What Do We Have So Far?

Loose Compactor $O(n \log n + nw)$

Loose Swap + Loose Compactor $O(nw)$ \implies Tight Compactor $O(n \cdot f(n) + nw)$

Tight Compactor $O(n \log n + nw)$

Key insight: don’t stop here
Tight Compactor $O(n \log n + nw) \implies$ Loose Compactor $O(n \log \log n + nw)$

- **Dense**
- **Sparse**

Chunk: $\log n$ balls \hspace{1cm} (each ball w bits long)

$n/\log n$ chunks, $w \log n$ bit payload each

Step 1: Run tight compact to move all “dense” chunks to the front \hspace{1cm} $O(nw)$ circuit

Very few chunks are dense
Tight Compactor $O(n \log n + nw) \implies$ Loose Compactor $O(n \log \log n + nw)$

Dense Sparse

Step 1: Run tight compact to move all “dense” chunks to the front

Step 2: Run tight compact on all sparse chunks

Very few chunks are dense

$n/\log n \times \log n$ balls of size w-bit each

Tight compact: $\log n \cdot \log \log n + \log n \cdot w$

$O(n \log \log n + nw)$ size circuit
Tight Compactor $O(n \cdot f(n) + nw)$ \implies Loose Compactor $O(n \cdot f(f(n)) + nw)$

Dense

Sparse

Very few chunks are dense

Chunk: $f(n)$ balls $(w \cdot f(n)$ bits)

$n/f(n)$ chunks, $w \cdot f(n)$ bit payload each

Step 1: Run tight compact to move all "dense" chunks to the front $O(nw)$ circuit

```
  ●●●●●      ●●●●●      ●●●●●      ●●●●●      ●●●●●
  ●●●●●      ●●●●●      ●●●●●      ●●●●●      ●●●●●
```

BIU

Center for Research in Applied Cryptography and Cyber Security
Dense \quad \rightarrow \quad Sparse

Step 1: Run tight compact to move all “dense” chunks to the front

Step 2: Run tight compact on all sparse chunks

Very few chunks are dense

Tight Compactor $O(n \cdot f(n) + nw) \quad \implies \quad$ Loose Compactor $O(n \cdot f(f(n)) + nw)$

$n/f(n) \times f(n)$ balls of size w-bit each

Tight compact: $f(n) \cdot f(f(n)) + f(n) \cdot w$

$O(n \cdot f(f(n)) + nw)$ size circuit
What Do We Have So Far?

Loose Compactor $O(n \log n + nw)$

Loose Compactor $O(n \cdot f(n) + nw)$ \implies Tight Compactor $O(n \cdot f(n) + nw)$

Tight Compactor $O(n \cdot f(n) + nw)$ \implies Loose Compactor $O(n \cdot f(f(n)) + nw)$

Tight Compactor $O(n \cdot f(n) + nw)$ \implies Tight Compactor $O(n \cdot f(f(n)) + nw)$
Bootstrapping!

Tight Compactor $O(n \log n + nw)$

A tight compactor of size: $\text{poly}(\log^* n - \log^* w) \cdot O(nw)$
Tight Compaction

Selection

Sorting
Tight Compaction
A Central Problem!

- Linear size circuit (ignoring polylog* factors)
- (Almost) Linear size sorting circuit (short keys) [ALS'21]
- Linear time compaction
- Optimal Oblivious RAM compiler
 [OptORAMa, AKLNPS'20]
Oblivious RAM Compiler: State of the Art

Lower bound: $\Omega(\log N)$
- [GoldreichOstrovsky‘96, LarsenNeilsen’18]

Hierarchical
- $O(\log N)$
 - [O90, GO96]
 - Computational security
 - [OptORAMa’20]

Tree based ORAM
- $O(\log^2 N)$
 - Statistical security
 - [Shi, Chan, Stefanov11]
Thank You!