Quantum Random Oracle Model, Part 2

Mark Zhandry (Princeton & NTT Research)
Recap: Classical ROM
[Bellare-Rogaway’93]

Examples: OAEP, Fujisaki-Okamoto, Full-Domain Hash, ...
Recap: Classical ROM
[Bellare-Rogaway’93]
The Quantum Random Oracle Model (QROM)

[Boneh-Dagdelen-Fischlin-Lehmann-Schaffner-Z’11]

Now standard in post-quantum crypto
Security Proof Challenges

Typical QROM reductions commit to entire function H at beginning, remain consistent throughout.

[Zhang-Yu-Feng-Fan-Zhang’19]: “Committed programming reductions"
Limits of Committed Programming Reductions

What classical ROM proofs admit CPReds, and which don’t?

What to do if no CPRed?
Example: The Fiat-Shamir Transform
[Fiat-Shamir’87]

(public coin, HV)
3-Round Proof (of Knowledge) NI Proof (of Knowledge)

π = \begin{cases}
\text{com} \\
\text{ch}=\text{H}(% \text{com}) \\
\text{res}
\end{cases}

Also: Identification protocols → signatures
Classical Fiat-Shamir Proof

Assume:

\[ch = H(com) \]

\[\text{res} \]
Classical Fiat-Shamir Proof

Select random query i^*

If $i = i^*$: $ch_i^* = ch^*$
Else: $ch_i \leftarrow$ random

Check:
$com = com_i^* \land ch = ch^*$
Problems with Fiat-Shamir in QROM

- **Quantum analog of selecting random query?**
 - Use small range distributions!?

- **Query extraction:**
 - A’s state disturbed by extracting com_i^*

- **Adaptive Programming:**
 - Can only set $H(\text{com}_i^*)$ after queries already made
Problems with Fiat-Shamir in QROM

Thm [Dagdelen-Fischlin-Gagliardoni’13]:
There is no CPRed for Fiat-Shamir

Intuition: two cases:
(1) H committed before sending com to V
 $\rightarrow V$’s ch independent of A’s ch
(2) H committed after sending com to V
 $\rightarrow A$’s com independent of reduction’s com
Solutions?

[Unruh’15]: Use different conversion

Idea: A commits to all possible responses \rightarrow can open using knowledge of RO

Problem: Less efficient

[Dagdelen-Fischlin-Gagliardoni’13, Unruh’17, Kiltz-Lyubashevsky-Schaffner’18]: Assume extra properties (e.g. statistical soundness) of proof system

Problem: Less efficient, maybe only proof (not PoK)
A Different Conversion
[Unruh’15]

Rough idea: \[\pi = \text{com} \{ H(\text{res(ch)}) \}_{ch} \]

Proof sketch:
• Simulate RO s.t. reduction can efficiently invert
• Invert \(\pi \) on verifier’s \(ch \)
• Lots of details to make sure \(A \) doesn’t cheat
Simulating Invertible Random Oracles

How to simulate H so that reduction can invert?

Recall: already simulating as 2q-wise independent function
→ Can use degree 2q polynomial over finite field
→ Invertible by solving polynomial equations
Example: Fujisaki-Okamoto

Building Block: One-way PKE

\[m \xrightarrow{\text{Enc}_0} c \xrightarrow{\text{Dec}_0} m \]

Security: \(\text{Enc}_0(pk, m) \) one-way

Building Block: One-time SKE

\[m \xrightarrow{\text{Enc}_1} c \xrightarrow{\text{Dec}_1} m \]

Security: \(\text{Enc}_1(k, m_0) \approx \text{Enc}_1(k, m_1), \quad H_\infty(\text{Enc}(k, m)) \text{ large} \)
Example: Fujisaki-Okamoto

\[
\begin{align*}
\text{Enc}_1(m, \delta) &\xrightarrow{\delta} c \\
\text{Enc}_0(c) &\xrightarrow{\text{H}} \text{Dec}_0(H(\delta, c), s) \\
\text{Check } \text{Enc}_0(pk, \delta; H(\delta, c)) &\xrightarrow{d} \text{Dec}_1(d) \\
\end{align*}
\]
Example: Fujisaki-Okamoto

CCA security intuition:
Only way to obtain valid (c,d) is to have queried H on some (δ, c)

→ Look at prior queries to H to answer CCA queries

QROM problem: CPReds can’t look at prior RO queries!
Example: Fujisaki-Okamoto

CPRed Impossibility? Open for FO, but I expect one exists

Given \((c, d)\), no way to even tell which RO inputs or outputs used

→ RO seems useless

Impos. of CPReds for OAEP [Zhang-Yu-Feng-Fan-Zhang’19]
A Tweaked Conversion
[Targhi-Unruh’15]

Idea: answer CCA queries by computing $\delta = J^{-1}(e)$
Example: Domain Extension for RO

Most hash functions built from lower-level objects

E.g. Merkle-Damgård (SHA1,SHA2)

Problem: sometimes structure can be exploited for attack, even if h is assumed ideal
Example: Domain Extension for RO

Can we nevertheless justify the “RO Assumption”, despite structure?

Yes(ish): indifferentiability
[Maurer-Renner-Holenstein’04]
Indifferentiability

Real World

MD → h
A

Ideal World

H → Sim
A
Indifferentiability

Thm [Ristenpart-Shacham-Shrimpton’11]:
Indifferentiability ⇒ as good as RO for “single stage games”

Thm [Coron-Dodis-Malinaud-Puniya’05]
MD is classically indifferentiable under appropriate padding
Proof idea: Simulator can figure out when A is trying to evaluate MD by looking at past oracle queries
Quantum Indifferentiability

Real World

MD \hbar

Ideal World

H Sim
Quantum Indifferentiability

Fact: No CPRed (stateless simulator) for indifferentiable domain extension, *regardless of construction*

Proof idea:

- \(\text{Size(truth table of Sim}^H) \ll \text{Size(truth table of H)} \)
- And yet, \(\text{Sim}^H \) allows for computing \(H \)
 \[\rightarrow \text{Compression for random strings} \]
What’s next?

Certain protocols, and even certain tasks, are unprovable under CPReds

Final hour: non-committed programming reductions