Crash Course in Quantum Computing

Hour 3: Advanced Quantum Information Theory

BIU Winter School on Cryptography 2021

Lecturer: Henry Yuen
Mixed States
Probabilistic mixtures of pure quantum states

• Up till now, we’ve represented quantum states as unit vectors in \mathbb{C}^d. These are called pure states.

• Describing a quantum system using a pure state $|\psi\rangle$ indicates that state of the system is determined.

• Ex: taking a qubit in the $|0\rangle$ state, and applying H to it.

• What if someone flips a coin and hands you either $|0\rangle$ or $|+\rangle$ depending on the coin? If you do not see the coin, then the state given to you is a mixed state. We can describe this as a probabilistic mixture:

\[
\left(\frac{1}{2}, |0\rangle\right), \left(\frac{1}{2}, |+\rangle\right)
\]
Density matrices

• A d-dimensional density matrix is a matrix $\rho \in \mathbb{C}^{d \times d}$ such that
 • ρ is positive semidefinite
 • $Tr(\rho) = 1$

• Density matrices describe mixed states.

• A pure state $|\psi\rangle \in \mathbb{C}^d$ corresponds to density matrix $|\psi\rangle\langle\psi|$.

• A mixture $\{(p_1, |\psi_1\rangle), \ldots, (p_k, |\psi_k\rangle)\}$ corresponds to density matrix $\sum_i p_i |\psi_i\rangle\langle\psi_i|$

\[
\Tr \left(\sum_i p_i |\psi_i\rangle\langle\psi_i| \right) = \sum_i p_i \cdot \Tr (|\psi_i\rangle\langle\psi_i|) = \sum_i p_i = 1.
\]
Density matrices

- Ex: $|0\rangle, |1\rangle$

\[
\begin{pmatrix}
0 & 0 \\
0 & 0
\end{pmatrix}
\quad \quad
\begin{pmatrix}
0 & 0 \\
0 & 0
\end{pmatrix}
\]

- Ex: $\left(\frac{1}{2}, |0\rangle\right), \left(\frac{1}{2}, |+\rangle\right)$

\[
\frac{1}{2} \cdot \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + \frac{1}{2} \cdot \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} = \frac{1}{4} \cdot \begin{pmatrix} 3 & 1 \\ 1 & 3 \end{pmatrix}
\]
Density matrices

- Ex: \(\left(\frac{1}{2}, |0\rangle \right), \left(\frac{1}{2}, |1\rangle \right) \)
 \[
 = \frac{1}{2} |0\rangle \langle 0| + \frac{1}{2} |1\rangle \langle 1| = \begin{pmatrix} \frac{1}{2} & 0 \\ 0 & \frac{1}{2} \end{pmatrix} = \frac{1}{2} \cdot I
 \]
 maximally mixed state

- Ex: \(\left(\frac{1}{2}, |+\rangle \right), \left(\frac{1}{2}, |-\rangle \right) \)
 \[
 = \frac{1}{2} |+\rangle \langle +| + \frac{1}{2} |-\rangle \langle -| = \begin{pmatrix} \frac{1}{2} & 0 \\ 0 & \frac{1}{2} \end{pmatrix} = \frac{1}{2} \cdot I
 \]
 \[
 = \frac{1}{4} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} + \frac{1}{4} \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix} = \frac{1}{2} \begin{pmatrix} \frac{1}{2} & 0 \\ 0 & \frac{1}{2} \end{pmatrix} = \frac{1}{2} \cdot I
 \]
Projective measurements

\[M = \{M_1, M_2, \ldots, M_k\} \text{ is a } k\text{-outcome projective measurement if} \]

- Each \(M_i \) is a Hermitian projection matrix, i.e., \(M_i^\dagger = M_i \) and \(M_i^2 = M_i \)
- \(M_1 + M_2 + \cdots + M_k = I \)

Measuring a pure state \(|\psi\rangle \) using \(M \) yields

- outcome \(i \) with probability \(||M_i|\psi\rangle||^2 \)
- Post-measurement state \(\frac{M_i|\psi\rangle}{||M_i|\psi\rangle||^2} \)
Projective measurements

\[M = \{M_1, M_2, \ldots, M_k\} \] is a \(k \)-outcome projective measurement if

- Each \(M_i \) is a Hermitian projection matrix, i.e., \(M_i^\dagger = M_i \) and \(M_i^2 = M_i \)
- \(M_1 + M_2 + \cdots + M_k = I \)

Measuring a pure state \(|\psi\rangle\) using \(M \) yields

- outcome \(i \) with probability \(||M_i|\psi\rangle||^2 \)
- Post-measurement state \(\frac{M_i|\psi\rangle}{||M_i|\psi\rangle||^2} \)

Ex: measuring according to orthonormal basis \(B = \{|b_0\rangle, \ldots, |b_{d-1}\rangle\} \) corresponds to projectors \(M_i = |b_i\rangle\langle b_i| \)
Density matrices

- Density matrices encode everything that is physically relevant about a probabilistic mixture of pure states.

- **Unitary evolution**: $\rho \mapsto U \rho U^\dagger$

- **Measurement**: Let $M = \{M_1, M_2, ..., M_k\}$ denote a k-outcome projective measurement. Then measuring ρ with M yields outcome i with probability $Tr(M_i \rho)$

- **Post-measurement state**: $\rho \mapsto \frac{M_i \rho M_i}{Tr(M_i \rho)}$
Density matrices

- **Ex:** $|\psi\rangle = \alpha|0\rangle + \beta|1\rangle$, $\rho = |\psi\rangle\langle\psi|$, measure using standard basis.

$$M = \frac{1}{2}\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}.$$

$|\psi\rangle = |\alpha|^2|0\rangle + \alpha\beta^*|0\rangle + |\beta|^2|1\rangle.$

- **Ex:** $\rho = \frac{1}{2}$, measure using basis $B = \{|b_0\rangle, |b_1\rangle\}$.

$$\Pr[|b_0\rangle \text{ outcome}] = \text{Tr}(|b_0\rangle\langle b_0| \cdot \frac{I}{2}) = \frac{1}{2} \text{Tr}(|b_0\rangle\langle b_0|) = \frac{1}{2}.$$

$$\Pr[|b_1\rangle \text{ outcome}] = \frac{1}{2}.$$
Quantum One-Time Pad

- Classical one-time pad: Fix message $m \in \{0,1\}^n$. Let s be uniformly random n-bit string. Marginal distribution of $m \oplus s$ is uniformly random.
Quantum One-Time Pad

- **Classical one-time pad**: Fix message $m \in \{0,1\}^n$. Let s be uniformly random n-bit string. Marginal distribution of $m \oplus s$ is uniformly random.

- **Quantum one-time pad**: Fix qubit $|\psi\rangle \in \mathbb{C}^2$. Sample uniformly random bits $a, b \in \{0,1\}$. Apply $Z^a X^b$ to $|\psi\rangle$.

- The ensemble $\left\{\left(\frac{1}{4}, Z^a X^b |\psi\rangle\right)\right\}$ looks uniformly random.
Quantum One-Time Pad

• **Classical one-time pad**: Fix message \(m \in \{0,1\}^n \). Let \(s \) be uniformly random \(n \)-bit string. Marginal distribution of \(m \oplus s \) is uniformly random.

• **Quantum one-time pad**: Fix qubit \(|\psi\rangle \in \mathbb{C}^2 \). Sample uniformly random bits \(a, b \in \{0,1\} \). Apply \(Z^a X^b \) to \(|\psi\rangle \).

• The ensemble \(\left\{ \left(\frac{1}{4}, Z^a X^b |\psi\rangle \right) \right\} \) looks uniformly random.

• Corresponding density matrix:

\[
\frac{1}{4} \left(|\psi\rangle \langle \psi | + X |\psi\rangle \langle \psi | X + Z |\psi\rangle \langle \psi | Z + ZX |\psi\rangle \langle \psi | ZX \right) = \frac{I}{2}
\]
Density matrices of multiple systems

• Given two quantum systems described by density matrices ρ, σ, their joint system is described by the density matrix $\rho \otimes \sigma$.

• n copies of ρ is abbreviated $\rho^{\otimes n}$

• Not all density matrices on multiple systems can be written as $\rho_1 \otimes \rho_2 \otimes \rho_3 \otimes \ldots$.

• But doesn’t mean entangled! For example, $\rho = \frac{1}{2} |00\rangle\langle 00| + \frac{1}{2} |11\rangle\langle 11|$ is a mixture of classical states; has classical correlations.
Traces and partial traces

- $Tr(\rho \otimes \sigma) = Tr(\rho) \cdot Tr(\sigma)$

- Given density matrix ρ_{AB} on systems AB, can obtain density matrix on system A only via the partial trace:

$\rho_A = Tr_B(\rho_{AB})$

- $Tr_B(\cdot)$ denotes “tracing out” (a.k.a. marginalizing over) the B subsystem.

- Partial trace $Tr_B(\cdot)$ defined as $Tr_B(\langle a_1, b_1 \rangle \langle a_2, b_2 \rangle) = \langle a_1 | a_1 \rangle \langle b_1 | b_2 \rangle$ for all vectors $|a_1\rangle, |a_2\rangle, |b_1\rangle, |b_2\rangle$.

$$\text{outer product in space } A \otimes B.$$
Traces and partial traces

• Every mixed state ρ_A on a system A is also the result of taking a partial trace of a pure state $|\psi\rangle_{AB}$ on systems AB:

$$\rho_A = Tr_B(|\psi\rangle\langle\psi|_{AB})$$

• Such a pure state $|\psi\rangle$ is called a purification of ρ.

• Purifications of density matrices are not unique.
Density matrices

- **Ex:** $\rho = |0\rangle\langle 0| \otimes |+\rangle\langle +|$

\[\text{Tr}_B (\rho) = |0\rangle\langle 0| \quad \text{Tr}_A (\rho) = |+\rangle\langle +| . \]

- **Ex:** $\rho = |EPR\rangle\langle EPR|$

\[\text{Tr}_A (\rho) = \text{Tr}_B (\rho) = \frac{I}{2} . \]
Distinguishability of density matrices

Given two density matrices ρ and σ of the same dimension, we can measure how close they are via the trace distance:

$$D(\rho, \sigma) = \frac{1}{2} \| \rho - \sigma \|_1 = \frac{1}{2} \text{Tr}(|\rho - \sigma|)$$

Operational meaning: Trace distance $D(\rho, \sigma)$ is equivalently defined as maximum probability of distinguishing between ρ, σ using ANY possible quantum operation (measurements or unitaries).
Distinguishability of density matrices

Nice properties:

1. Nonnegative: \(D(\rho, \sigma) \geq 0 \), and achieves 0 if and only if \(\rho = \sigma \).

2. Symmetric: \(D(\rho, \sigma) = D(\sigma, \rho) \)

3. Triangle inequality: \(D(\rho, \sigma) \leq D(\rho, \tau) + D(\tau, \sigma) \)

4. Convex: \(D(\sum_i p_i \rho_i, \sigma) \leq \sum_i p_i D(\rho_i, \sigma) \)

5. Does not increase when tracing out systems: \(D(\rho_A, \sigma_A) \leq D(\rho_{AB}, \sigma_{AB}) \)

6. Unitarily invariant: \(D(U\rho U^\dagger, U\sigma U^\dagger) = D(\rho, \sigma) \)
Density matrices

- **Ex:** \(\rho = \frac{1}{2} |0,0\rangle\langle 0,0| + \frac{1}{2} |1,1\rangle\langle 1,1| \)

\[D(\rho_{AB}, \sigma_{AB}) = 1. \]

\[D(\rho_A, \sigma_A) = 0. \]

\(\sigma = \frac{1}{2} |0,1\rangle\langle 0,1| + \frac{1}{2} |1,0\rangle\langle 1,0| \)
Quantum Complexity Theory
The Complexity Zoo

- **PSPACE**
- **NP**
- **P**
The Complexity Zoo

PSPACE

QMA

NP

BQP

P
Language $L \subseteq \{0,1\}^*$ is in \textit{Bounded-Error Quantum Polynomial Time (BQP)} if there exist a family of circuits \{${C}_1, {C}_2, \ldots$\} that are uniformly generated and satisfy:

- $|{C}_n| \leq O(n^c)$
- For all $x \in \{0,1\}^n$
 - If $x \in L \implies \Pr[|{C}_n\rangle \text{ accepts } x] \geq \frac{2}{3}$ \hspace{1cm} (Completeness)
 - If $x \notin L \implies \Pr[|{C}_n\rangle \text{ accepts } x] \leq \frac{1}{3}$ \hspace{1cm} (Soundness)

\text{wlog assume completeness and soundness errors are exp(-$\Omega(n)$); by repeating circuit poly(n) times and taking MAJ.}
BQP

Problems in BQP:
• All problems in BPP
• Factoring, Discrete Logarithm
• Simulating quantum systems.

Canonical BQP-complete (promise) problem:
\textbf{QCIRCUIT}: given classical description of quantum circuit C, decide whether C accepts on the all zeroes input with probability at least $\frac{2}{3}$ or at most $\frac{1}{3}$.
QMA = quantum analogue of NP (or MA).

Language \(L \subseteq \{0,1\}^* \) is in **Quantum Merlin-Arthur (QMA)** if there exist a family of **verifier** circuits \(\{C_1, C_2, \ldots \} \) that are uniformly generated and satisfy:

- \(|C_n| \leq n^c \)
- For all \(x \in \{0,1\}^n \):
 - If \(x \in L \Rightarrow \exists |\psi\rangle, \Pr[C_n \text{ accepts } |x\rangle \otimes |\psi\rangle] \geq \frac{2}{3} \) (Completeness)
 - If \(x \notin L \Rightarrow \forall |\psi\rangle, \Pr[C_n \text{ accepts } |x\rangle \otimes |\psi\rangle] \leq \frac{1}{3} \) (Soundness)

\(\text{wlog, can assume completeness/soundness error is exponentially small. (Marriott–Watrous amplification)} \)
QMA

Problems in QMA:
• All problems in BQP
• All problems in NP
• Finding minimum energy states of quantum systems (the Local Hamiltonians problem)

Canonical QMA-complete (promise) problem:
Q-VER-CIRCUIT: given classical description of quantum circuit C, decide if
• There exists a quantum state $|\psi\rangle$ such that C accepts $|\psi\rangle \otimes |0 \cdots 0\rangle$ with probability at least $\frac{2}{3}$, or
• All states $|\psi\rangle$ are accepted with probability at most $\frac{1}{3}$.
Local Hamiltonians problem

\((k, \alpha, \beta)\)-Local Hamiltonians problem: given classical description of measurements \(\{H_1, H_2, \ldots, H_m\}\) on \(n\) qubits where each \(H_i\)

- Acts on \(k\) qubits
- Is a two-outcome measurement (with outcomes labelled “Accept” and “Reject”),

decide whether there exists a quantum state \(|\psi\rangle\) such that

- **YES case:** \(\sum p_i \leq \alpha\)
- **NO case:** \(\sum p_i \geq \beta\)

where \(p_i = \text{Pr}[\text{measuring}|\psi\rangle\text{ using } H_i \text{ yields “Reject”}]\)
Local Hamiltonians problem

\((k, \alpha, \beta)\)-Local Hamiltonians problem: given classical description of measurements \(\{H_1, H_2, ..., H_m\}\) on \(n\) qubits where each \(H_i\)

- Acts on \(k\) qubits
- Is a two-outcome measurement (with outcomes labelled “Accept” and “Reject”),

decide whether there exists a quantum state \(|\psi\rangle\) such that

- **YES** case: \(\sum p_i \leq \alpha\)
- **NO** case: \(\sum p_i \geq \beta\)

where \(p_i = \Pr[\text{measuring}|\psi\rangle \text{ using } H_i \text{ yields “Reject”}]\)

The \((k, \alpha, \beta)\)-Local Hamiltonians problem is \textbf{QMA-complete} for \(k = 3, \beta - \alpha \geq \frac{1}{\text{poly}(n)}\)
QMA-completeness of Local Hamiltonians

Instance of Q-VER-CIRCUIT

- n qubits
- T gates

Instance of $\text{3-Local Hamiltonians}$

3-Local Measurements $\{H_1, H_2, \ldots, H_m\}$ where

- **YES case:** there exists a quantum state $|\psi\rangle$ such that $\sum p_i \leq \exp(-n)$
- **NO case:** for all quantum states $|\psi\rangle$, $\sum p_i \geq \Omega\left(\frac{1}{T^3}\right)$

where $p_i = \Pr[\text{measuring}|\psi\rangle \text{ using } H_i \text{ yields "Reject"}]$

Assume that WLOG completeness and soundness errors are exponentially small.
QMA-completeness of Local Hamiltonians

Instance of Q-VER-CIRCUIT

Let $|\theta\rangle$ be such that C accepts $|\theta\rangle \otimes |0 \ldots 0\rangle$ with probability at least $1 - \exp(-n)$.

Witnesses of YES instances of Q-VER-CIRCUIT are mapped to witnesses of YES instances of 3-Local Hamiltonians in the following way:

$$|\psi\rangle = \frac{1}{\sqrt{T+1}} \sum_{t=0}^{T} |\hat{e}\rangle \otimes |\psi_t\rangle$$

"history state"

where

- $|\psi_0\rangle = |\theta\rangle \otimes |0 \ldots 0\rangle$
- $|\psi_t\rangle = G_t |\psi_{t-1}\rangle$ for $t \geq 1$

$$\sum \Pr[\text{measuring}|\psi\rangle \text{ using } H_i \text{ yields "Reject"}] \leq \exp(-n)$$
Enjoy the rest of the workshop!