Fully Linear PCPs and their Cryptographic Applications

Niv Gilboa – Ben-Gurion University
Based On

Goal

- Compute $f(x_1, \ldots, x_n)$
- Semi-honest adversary

- Prove correctness
- Com. = $o($circuit size$)$

\Rightarrow Malicious com. \approx semi-honest com.
Flavors of Malicious Security

• Security with abort
 • Incorrect execution
 • Who’s the bad guy? ➔
 • Abort

• Full security – guaranteed output delivery
 • Incorrect execution
 • What we want
 • What we actually get
Zero-knowledge proofs

[GMR89]

Complete. Honest P convinces honest V.

Sound. Dishonest P^* rarely fools honest V.

ZK. Dishonest V^* learns only that $G \in 3\text{COL}$.

$\Rightarrow V^*$ learns nothing else about G
ZK for NP Statements (3-Colorability)

[GMW91]

Commit to colors

Prover P

Verifier V

Repeat k times to improve prob.

Proof: polynomial size in input length
This talk

Zero-knowledge proofs on distributed data

Complete. Honest P convinces honest (V_1, V_2).

Sound. Dishonest P^* rarely fools honest (V_1, V_2).

Strong ZK. Dishonest V_1^* (or V_2^*) learns only that $G_1 + G_2 \in 3\text{COL}$. $\Rightarrow V_1$ learns nothing else about G_2.
This talk
Zero-knowledge proofs on distributed data

\[G_1 + G_2 \]

3-coloring of \(G_1 + G_2 \)

"\(G_1 + G_2 \) is 3-colorable"

Verifier \(V_1 \)

Verifier \(V_2 \)

Prover \(P \)

3-round protocol = As in other multiparty protocols

Public coin = Verifiers’ messages to prover are random strings

More than two verifiers
Special case

Zero-knowledge proofs on secret-shared data

Language $\mathcal{L} \subseteq \mathbb{F}^n$, for finite field \mathbb{F}.
Fully Linear PCP / IOP
Linear Probabilistically Checkable Proofs (PCPs) [IKO07]

Finite field \mathbb{F}, language $\mathcal{L} \subseteq \mathbb{F}^n$

Linear PCP proof is a vector π.

Linear PCP verifier
- takes x as input,
- makes $O(1)$ linear queries to π.

Must satisfy notions of completeness, soundness, and zero knowledge.
Fully linear probabilistically checkable proofs (PCPs)

[This line of work]

Finite field \mathbb{F}, language $\mathcal{L} \subseteq \mathbb{F}^n$

Fully linear PCP proof is a vector π.

Fully linear PCP verifier
- takes x as input,
- makes $O(1)$ linear queries to $(x \| \pi)$.

Must satisfy notions of completeness, soundness, and zero knowledge.

\[x \in \mathbb{F}^n \quad \pi \in \mathbb{F}^m \]

query $q \in \mathbb{F}^{n+m}$

answer $a = \langle q, x \| \pi \rangle \in \mathbb{F}$

"$x \in \mathcal{L}$"
Fully linear IOPs
An interactive analogue of fully linear PCPs

Linear analogue + ZK of: [BCS16], [RRR16]

At the end of the interaction, verifier makes linear queries to
\[(x|\pi_1|\pi_2|...|\pi_t)\]
and accepts or rejects.

Naturally captures many existing proof protocols (GKR, ...)

Prover

Verifier

\[\pi_1 \in \mathbb{F}^m\]

\[\pi_2 \in \mathbb{F}^m\]

\[\text{challenge}_1\]

\[\text{challenge}_2\]

...
If language \mathcal{L} has an efficient fully linear PCP/IOP, it has an efficient ZK proof on distributed data.

1. Generate FLPCP proof and split it using secret sharing.
If language \mathcal{L} has an efficient fully linear PCP/IOP, it has an efficient ZK proof on distributed data.

2. Sample query vectors using common randomness.

Verifier V_1

\[
\begin{align*}
\text{Query } q &= 5 | 1 | 2 | 7 | 4 | 9 \\
\pi_1
\end{align*}
\]

\[
\begin{align*}
x_1 &\in \mathbb{F}^{n/2} \\
\pi_1
\end{align*}
\]

Verifier V_2

\[
\begin{align*}
x_2 &\in \mathbb{F}^{n/2} \\
\pi_2
\end{align*}
\]
If language \mathcal{L} has an efficient fully linear PCP/IOP, it has an efficient ZK proof on distributed data.

3. Publish shares of query answers and reconstruct.

Verifier V_1

- $x_1 \in \mathbb{F}^{n/2}$
- π_1

$\langle q, x_1 \parallel \pi_1 \rangle \in \mathbb{F}$

$\langle q, x_1 \parallel \pi_1 \rangle = \langle q, x_1 \parallel (\pi_1 + \pi_2) \rangle$

Verifier V_2

- $x_2 \in \mathbb{F}^{n/2}$
- π_2

$\langle q, x_2 \parallel \pi_2 \rangle \in \mathbb{F}$

$\langle q, x_2 \parallel \pi_2 \rangle = \langle q, x \parallel \pi \rangle = \text{answer}$
If language \mathcal{L} has an efficient fully linear PCP/IOP, it has an efficient ZK proof on distributed data.

4. Recover $O(1)$ query answers, run FLPCP verifier.

Verifier V_1

$x_1 \in \mathbb{F}^{n/2}$
π_1

Verifier V_2

$x_2 \in \mathbb{F}^{n/2}$
π_2

Communication: $|\text{proof}| + O(1)$
Selected results: New ZK proofs I

\(\mathbb{F} \) - finite field, \(\mathcal{L} \subseteq \mathbb{F}^n \)- language (\(n \ll |\mathbb{F}| \)), \(G: \mathbb{F}^L \rightarrow \mathbb{F} \) - algebraic gate

Theorem. If \(\mathcal{L} \) is recognized by a circuit \(\mathcal{C} \) that has \(M \) \(G \)-gates, and some addition gates, there is a public-coin ZK proof on distributed data for \(\mathcal{L} \) with:

- \(O(1) \) rounds and
- communication cost \(O(L + M(deg.G)) \). (elements of \(\mathbb{F} \))
Selected results: New ZK proofs II

Theorem. If \mathcal{L} has a degree-two arithmetic circuit, there is a public-coin ZK proof on distributed data for \mathcal{L} with:
- k rounds and
- communication cost $O(n^{O(1/k)})$.

(Improves: $\Omega(n)$ [BC17])

Extensions to:
- Rings \mathbb{Z}_{2^k}
- Degree $O(1)$ circuits
Constructions
Short proofs for structured circuits I

- Ideas similar to [LFKN92, AW09, GGPR13]
- Circuit over field \mathbb{F}:
 - Linear gates
 - “Large” algebraic G-gates
- Order gates
- Define Polynomials
 - f_L – left inputs
 - f_M – middle inputs
 - f_R – right inputs
Short proofs for structured circuits II

- \(p = G(f_L, f_M, f_R) \) defines outputs
- \(p(1) \)
- \(p(2) \)
- \(p(3) \)
- \(p(\#G \text{ gates}) = C(x) \)
Short proofs for structured circuits II

- Prover sends \(p \)
- Length: \((\#G \text{ gates}) (\text{degree } G)\)
- Verifier checks
 - \(p(\#G \text{ gates})=0 \ (x \in \mathcal{L}) \)
 - \(p(r)=G(f_L,f_M,f_R)(r) \) for random \(r \)
- Verifier work requires
 - Interpolation
 - Evaluation \(\left\{\right. \) Linear! \(\left.\right\} \)
- ZK by extra randomization of \(f_L/f_M/f_R \)
Corollary

• $O(\sqrt{n})$ FL-PCP for any degree 2 circuit (Improves: Prio $\Omega(n)$ [BC17])
• $C(x)$ degree 2 $\Rightarrow C(x) = x^{-1}Ax$ for some matrix A
• $C(x) = \langle x, Ax \rangle$
• C made up of
 • G gate – inner product on length $n^{1/2}$ inputs
 • Linear gates
• Proof size: $2n^{1/2}$
Reducing communication for simple languages

Let \mathbb{F} be a finite field. Let $\mathcal{L} \subseteq \mathbb{F}^n$ be a language. $(n \ll \mathbb{F})$

Theorem. If \mathcal{L} has a degree-two arithmetic circuit, there is a public-coin ZK proof on distributed data for \mathcal{L} with:

- $O(\log n)$ rounds and
- communication cost $O(\log n)$.

- Uses our new FLPCP
- Idea: Recursively outsource the verifier’s work to the prover.
"Prove to me that the FLPCP verifier would have accepted π_1, using random coins r."

For circuits with “SIMD” structure, proof size shrinks: $O(|C|) \rightarrow O(\log |C|)$

Low-degree circuits have the necessary structure
Semi-Honest to Malicious MPC Compiler
Secure Multi-Party Computation (MPC)

What is the communication complexity of securely evaluating \(f \)?

- **HE:** \(\tilde{O}(|a, b, c| + |f(a, b, c)|) \) [G09,BGI16]
 - Based on heavy cryptographic tools
 - In practice: \((\alpha \cdot C)\) elements/party, small const \(\alpha \geq 2 \)
 - Long line of work improving \(\alpha \) in various settings

\[C = (\text{Boolean/arithmetic}) \]

\[\alpha \geq 2 \quad \text{Step 2: (standard) “active” security} \]

Lightweight \(\alpha = 1 \)

\[\text{Step 1: (weak) “passive” security} \]
Results

• Generic MPC: compiler from semi-honest to malicious
 • “Natural” protocols
 • Semi-honest majority
 • Any number of parties – secure with abort
 • Constant Number of parties – full security
 • In this talk – focus on 3PC
 • Sub-linear communication (in circuit size)
 • Soundness – $1/|F|$, but reduce by extension field

• Specific MPC functionalities
 • Even better communication!
Comparison of 3PC Protocols

<table>
<thead>
<tr>
<th>The protocol</th>
<th># of elements sent per party per multiplication gate</th>
<th>Full security?</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Boolean Circuits</td>
<td>Circuits over \mathbb{F}_2^8</td>
</tr>
<tr>
<td>Araki et al. [ABF+17]</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>Chaudhari et al. [CCPS19]</td>
<td>7(offline)+4/3(online)</td>
<td>-</td>
</tr>
<tr>
<td>Chida et al. [CGH+18]</td>
<td>41</td>
<td>6</td>
</tr>
<tr>
<td>Eerikson et al. [EOP+19]</td>
<td>123</td>
<td>-</td>
</tr>
<tr>
<td>This work</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
3PC: Main Theorem

Given any **passive-secure 3PC** protocol with **“natural”** structure, then can achieve **active** security with \(+o(|C|)/\text{party extra comm} \).

“Natural” 3PC protocol:

Input Shares of Adv:
- Commit to his input

Before final message:
- Total random garbage

If... Some degree-2 relation holds on msgs

... then [robustly shared \(y \)] = \(C(a, b, c) \)

Final round: Robust shares of output
Natural Protocol – Example [AFLNO16]

Step 0: Represent f as circuit

$X_{1,1}$
$X_{2,1}$
$X_{1,2}$
$X_{3,1}$
$X_{2,2}$
$X_{3,2}$

$+\quad *\quad +\quad *\quad f(x_1,x_2,x_3)$

$X_{1,1}$
$X_{2,1}$
$X_{1,2}$
$X_{3,1}$
$X_{2,2}$
$X_{3,2}$

$X_{1,1}$
$X_{2,1}$
$X_{1,2}$
$X_{3,1}$
$X_{2,2}$
$X_{3,2}$
Step 1: Secret Share inputs

- Party 1: X
- Party 2: y

Step 2: Secret Share zeros

- Party 1: $a+b+c=x$
- Party 2: $d+e+f=x$

- Party 1: a, b
- Party 2: b, c
- Party 3: a, c
- Party 1: d, e
- Party 2: e, f
- Party 3: d, f

Seed k

Long shared mask $_{12}$
Natural Protocol - Example

Step 3: distributed evaluation of every gate

$X \rightarrow a+b+c=x$

$y \rightarrow d+e+f=y$

$x \oplus y$

$x \cdot y$

Party 1: $a+d, b+e$

Party 2: $b+e, c+f$

Party 3: $a+d, c+f$

Mask
Re-share values
3PC “Passive” secure protocol

1. Secret share inputs
 (note: linear shares)

2. Generate $|C|$ sets of shares of 0

3. Gate-by-gate evaluation
 + : Locally on shares
 x : Cross-terms $a_i b_j$ computable!
 Locally: Compute additive shares
 Compute, mask, & send share

4. Output gate: Exchange final shares

Comm Cost: 1 elmt/party/multiplication
Verifying Correct Execution

Party 1
- a, b
- d, e

Party 2
- b, c
- e, f

Party 3
- Shares of $af + cd + \text{masks}$
- Degree 2 function of shared input

mask_{12}
mask_{13}
mask_{23}
Collective 3PC Protocol

Protocol Π' (without final message)

Final Message (robust shares, expect same message from two parties)

Each party proves in ZK their messages in Π' were computed correctly

Fully secure – abort leads to identifying “good” party

Total extra communication:

$$|\text{proof}| + |\text{verifier comm}| = o(|C|)$$
3PC Summary

- Fully Linear PCPs: Proving on secret shared / committed / distributed data
- New (passive \rightarrow active) security compiler for 3PC
- Concrete efficiency:
 - 2^{20} gate circuit
 - 0.5 Kbyte communication
 - 30 field operations per gate $\text{GF}(2^{47})$
 - Soundness 2^{-40}

Protocols with a particular “natural” structure

(Standard) active security + $o(|C|)$ communication

(Weak) passive security
Extending to $n > 3$ Parties

- Challenge: **Malicious prover + verifier(s)**
 - Even defining soundness becomes non-trivial
 - Requires “robustness” of pieces of statement x

- Challenge: In MPC protocol with $n>3$, Prover no longer knows the full robust statement
 - Involves messages Prover wasn’t involved in

- Challenge: Replication based protocol inefficient for $\omega(1)$ servers

- Approach – Parties distribute role of prover. Stay tuned...
Thank You!
Applying Our Compiler to “Natural” Protocols

• 3 parties, 1 corruption (“3PC”)
 - Motivated setting: “Minimal” across MPC settings eg: [MRZ15,AFLN+16,ABFL+17,LN17,FLNW17,CGHI+18,GR018,NV18,EnOP+19]

• Comparison:
 - Over large field: $\alpha = 2$ [CGHIKLN18, NV18]
 - Over Boolean: $\alpha = 7$ [ABFLLNOWW17]
 - Any field or \mathbb{Z}_N: $\alpha = 1$ [This work]

• Constant $n \in O(1)$ parties, t corruptions, $n = 2t + 1$
 - Over large field: $\alpha = 3$ [CGHIKLN18]
 - Over Boolean/\mathbb{Z}_2^k: $\alpha > 40$ [CGHIKLN18]
 - Any field or \mathbb{Z}_N: $\alpha = 3t/(2t + 1) \leq 1.5$ [This line of work]
 - Compiling eg, [AFLNO16,KKW18]