Consensus
Via the information theoretic lens
(Part 2)

Ittai Abraham, VMware Research

Group blog: Decentralized Thoughts
Consensus [Lamport et al. 78]

Parties have initial input
Can send messages via point-to-point channels

Termination (Liveness): In the end of the protocol each party must decide on a value.

Safety: No two non-malicious parties decide on different values.

Trivial: Always decide a default value.

Make the problem not trivial:

- **Validity:** If all the non-faulty have the same input, then this must be the decision value.
- **Fair Validity:** With constant probability an input of a non-faulty party is decided upon.
A configuration of a system is the state of all the parties and the set of all pending, undelivered messages.

C is a deciding configuration: if all non-faulty parties have decided in C. We say that C is 1-deciding if the common decision value is 1, and similarly that C is 0-deciding if the decision is 0.

C is an uncommitted configuration: if it has a future 0-deciding configuration and a future 1-deciding configuration. There exists C⇝D₀ and C⇝D₁ such that D₀ is 0-deciding and D₁ is 1-deciding.

C is a committed configuration: if every future deciding configuration D (such that C⇝D) is deciding on the same value. We say that C is 1-committed if every future ends in a 1-deciding configuration, and similarly that C is 0-committed if every future ends in a 0-deciding configuration.

Using the Augilera Tueg 99 proof

Lamport Fischer 82: tolerating t crashes requires t+1 rounds
Lemma: Every protocol solving consensus must have an initial configuration that is uncommitted

By contradiction, assume all are committed

Hybrid argument (1,1,1),(0,1,1),(0,0,1),(0,0,0): must be two adjacent committed configurations for 1 and for 0

But a CRASH of one party will cause both execution to be indistinguishable!
Proof by example for n=3: Consider the 4 initial configurations (1,1,1),(0,1,1),(0,0,1),(0,0,0)

By validity, configuration (1,1,1) must be 1-committed and configuration (0,0,0) must be 0-committed

Seeking a contradiction, let's assume none of the 4 initial configurations is uncommitted. So both (0,1,1) and (0,0,1) are committed

Since all 4 initial configurations are committed there must be two adjacent configurations that are committed to different values. W.l.o.g. assume that (0,1,1) is 1-committed and (0,0,1) is 0-committed

In both configurations, party 2 crashes right at the start of the protocol: Clearly both configurations look like (1,CRASH,0)(1,CRASH,0)

Both worlds must decide the same, but this is a contradiction because one is 1-committed and the other is 0-committed
Tolerating t crashes requires $t+1$ rounds

[AT99] proof

The general case:

Lemma 1: exits an uncommitted configuration

Lemma 2: with $t-1$ crashes, there exists a round $t-1$ execution that leads to an uncommitted configuration

Lemma 3: you cannot always decide in round x if in round $x-1$ you may be uncommitted and there may be a crash

Theorem: cannot always terminate in t rounds \rightarrow need $t+1$ rounds in the worst case
Learning by Doing

4 parties, each with input in \{0,1\}

Adversary controls one party (malicious)

Write a protocol for consensus:

- Safety: no two non-faulty decide different values
- Liveness: All non-faulty parties decide
- Validity: If all the non-faulty have the same input \(x\), then \(x\) is the decision value
In two rounds, just think about full information
Round 1: Send one bit, receive 3 bits
Round 2: send 3 bits, receive 9 bits
Decide as function of [1 bit + 3 bit + 9 bits]
Its not about you or what you say, its about what others say about you
Learning by Doing: solution

Liveness: trivial

Safety:
- Non-faulty: majority gossip will be correct
- Faulty: gossip only by non-faulty - so everyone will agree!

Validity: take majority
Learning by Doing

3 parties, each with input in \{0,1\}
Adversary controls one party (omission failure)
Write a protocol for consensus:

• (Uniform) Safety: no two decide different values
• Liveness: All non-faulty parties decide
• Validity: If all the non-faulty have the same input x, then x is the decision value
Learning by Doing

7 parties, each with input in \{0,1\}

Adversary controls two parties (malicious)

Write a protocol for consensus:

- Safety: no two non-faulty decide different values
- Liveness: All non-faulty parties decide
- Validity: If all the non-faulty have the same input \(x\), then \(x\) is the decision value
Byzantine Primary-Backup (at view v):
with Reliable Broadcast and locking

1. Primary sends \(<send, (value, v, u)>\) to all

2. Replica receives \(<send, (value, v, u)>\),
 - If \(u = lock\), \(n-f <echo2, (value, u)>\) arrive, and first send from primary in view \(v\), then
 - sends : \(<echo1, (value, v)>\) to all

3. Replica gathers \(n-f <echo1, (value, v)>\), then
 - Sends \(<echo2, (value, v)>\) to all

4. Replica gathers \(n-f <echo2 (value, v)>\), then (at view \(v\))
 - Set lock:=v; lock value:=value
 - Sends \(<lock, (value, v)>\) to all

5. Replica gathers \(n-f <lock, (value, v)>\), then
 - Decide (value)

Replica gathers \(f+1 <echo2, (value, v)>\), then
- If did not send echo2
- Sends \(<echo2, (value, v)>\) to all

View change:
- **Replica**:
 - Sends its lock and lock value

- **Primary**:
 - accept a lock (value’,v’) if also \(n-f <echo2, (value, v)>\) arrive
 - Wait for \(n-f\) such locks
 - Choose the value with the highest lock (view)
Validity

If all non-faulty have input x then x must be the decision value

If a non-faulty is the first primary we are fine

But what if the first primaries are faulty?

Virtual primary!
Safety

Let v^* be the first view that any replica decided (value X, view v^*)

Prove by induction that any *accepted send* of view $v \geq v^*$ must be with value X

for base case due to non-equivocation
Safety

Induction claim:
1. Any accepted send of view $v \geq v^*$ must be with value X
2. Existence of a core of $f+1$ non-faulty that have a lock on view at least v^* with value X
3. Any non-faulty, its maximal view lock is either:
 - On view v^* or larger and with value X
 - On a view smaller than v^*

Base case at view v^*:
- Core is the n-2f out of the n-f that sent a lock to decider
- Any other non-faulty: trivial since v^* is the highest view

Assume claim is true for $v \geq v^*$ and prove for $v+1$:
- If a primary uses a view that is at least v^*, from induction it must be with value X
- If a primary uses a view that is lower than v^*: it needs n-f echo1, but the core will block
Liveness

If a non-faulty primary is elected and the system is synchronous
Primary will hear locks from all non-faulty and will choose the maximum one
All non-faulty replicas will:
 • See the accepted send from the old view that the primary used
 • This accepted send is from a view that is at least their lock view
 • Hence all non-faulty will echo1 the primary
 • The rest of the protocol is unconditional
In asynchrony, non-faulty primary can wait for just n-f responses during view change

- May miss a lock of a non-faulty
- So non-faulty primary may choose a lock that is smaller than the maximum
- Some non-faulty will block primary and n-f echo1 will not be reached

Solution: add one more round 😊

- After seeing n-f echo2, send **key**
- After seeing n-f keys, send **lock**
- If a non-faulty has a lock, then there are at least f+1 non-faulty that have a key
- During view change, ask for keys
- Hearing from n-f means that at least one key holder will be heard
Responsive Byzantine Primary-Backup (at view v):

Information Theoretic HotStuff

1. Primary sends $<send, (value, v, u)>$ to all

2. Replica receives $<send, (value, v, u)>$,
 - If $u >= lock$, n-f $<echo2, (value, u)>$ arrive, and first send from primary in view v, then
 - sends $<echo1, (value, v)>$ to all

3. Replica gathers n-f $<echo1, (value, v)>$, then
 - Sends $<echo2, (value, v)>$ to all

4. Replica gathers n-f $<echo2 (value, v)>, then (at view v)$
 - Set key:=v; key value:=value
 - Sends $<key, (value, v)>$ to all

5. Replica gathers n-f $<key, (value, v)>$ and n-f $<echo2 (value, v)>, then (at view v)$
 - Set lock:=v
 - Sends $<lock, (value, v)>$ to all

6. Replica gathers n-f $<lock, (value, v)>$, then Decide (value)

Replica gathers $f+1 <echo2, (value, v)>$, then
 - If did not send echo2
 - Sends $<echo2, (value, v)>$ to all

View change:
 - **Replica:**
 - Sends its key and key value
 - **Primary:**
 - accept a key (value’,v’) if also n-f $<echo2, (value, v)>$ arrive
 - Wait for n-f such key
 - Choose the value with the highest key (view)
Liveness

If a non-faulty primary is elected

Primary will hear locks from all non-faulty and will choose the maximum one

Primary will hear the maximal key from n-f during view change
 • If a non-faulty is locked, it's because of n-f keys, f+1 of them are non-faulty
 • At least one key holder will be in the n-f view change quorum
 • So the maximal key will be at least as high as the maximal lock of all non-faulty

All non-faulty replicas will:
 • See the accepted send from the old view that the primary used
 • This accepted send is from a view that is at least their lock view
 • Hence all non-faulty will echo1 the primary
 • The rest of the protocol is unconditional
Revolving coordinator

• After \(f \) view changes (\(O(f) \) rounds) a non-faulty primary will be elected

Assume we have an **oblivious leader election** functionality

• At least \(f+1 \) honest must request the functionality to start
• Each party \(i \) outputs a leader \(L(i)=j \)
• With probability at least \(\frac{1}{2} \) (can use any constant):
 – all non-faulty output the same value \(j \) and,
 – \(j \) was non-faulty before functionality started

Good for a static adversary

Adaptive adversary will adaptively corrupt that chosen primary 😞
Adaptive adversary will shoot down the primary

Solution:
- Let everyone be a primary
- Then choose who the real primary is in hindsight (and all other are just decoys)

Liveness: with constant probability a good primary is chosen

Safety:
- In hindsight, looks like a single primary each view
- If a faulty primary or a confusion of primaries is chosen, then this is just like a faulty primary
 - Safety is maintained!
Responsive Byzantine Primary-Backup (at view v):
Deterministic version

1. Primary sends <send, (value, v, u)> to all
2. Replica receives <send, (value, v, u)>
 • If u = lock, n-f <echo2, (value, u)> arrive, and first send from primary in view v, then
 - sends: <echo1, (value, v)> to all
3. Replica gathers n-f <echo1, (value, v)>, then
 • Sends <echo2, (value, v)> to all
4. Replica gathers n-f <echo2 (value, v)>, then (at view v)
 • Set key := v; key value := value
 • Sends <key, (value, v)> to all
5. Replica gathers n-f <key, (value, v)> and n-f <echo2 (value, v)>, then (at view v)
 • Set lock := v
 • Sends <lock, (value, v)> to all
6. Replica gathers n-f <lock, (value, v)>, then
 • Decide (value)

Replica gathers f+1 <echo2, (value, v)>, then
• If did not send echo2
• Sends <echo2, (value, v)> to all

View change:
• Replica:
 • Sends its key and key value
• Primary:
 • accept a key (value’, v’) if also n-f <echo2, (value, v)> arrive
 • Wait for n-f such key
 • Choose the value with the highest key (view)
Responsive Byzantine Primary-Backup (at view v):
with random leader election

1. Each party as Primary, sends \(<send, (value, v, u)>\) to all
2. Run oblivious leader election to decide who to listen to
3. Replica receives \(<send, (value, v, u)>\),
 - If \(u=锁\), \(n-f<echo2, (value, u)>\) arrive, and first send from primary in view v, then
 - sends: \(<echo1, (value, v)>\) to all
4. Replica gathers \(n-f<echo1, (value, v)>\), then
 - Sends \(<echo2, (value, v)>\) to all
5. Replica gathers \(n-f<echo2 (value, v)>, then (at view v)\)
 - Set key:=v; key value:=value
 - Sends \(<key, (value, v)>\) to all
6. Replica gathers \(n-f<key, (value, v)>\) and \(n-f<echo2 (value, v)>, then (at view v)\)
 - Set lock:=v
 - Sends \(<lock, (value, v)>\) to all
7. Replica gathers \(n-f<lock, (value, v)>, then\)
 - Decide (value)

Replica gathers \(f+1<echo2, (value, v)>\),
then
- If did not send echo2
- Sends \(<echo2, (value, v)>\) to all

View change:
- Each Replica:
 - Sends its key and key value to everyone
- Each Primary:
 - accept a key \((value',v')\) if also \(n-f<echo2, (value, v)>\) arrive
 - Wait for \(n-f\) such key
 - Choose the value with the highest key (view)
Choosing a random leader is a simple MPC protocol
But MPC uses VSS, and VSS requires broadcast 😞
Solution:
• a notion that is weaker than VSS but strong enough for OLE
• Moderated VSS (KK06) and Graded VSS (MF88)
• Tailor made MPC (with a constant error probability)

Gradecast -> MVSS -> OLE -> O(1) time expected Byzantine Agreement
Gradecast (MF88, D81)

Dealer P* has input m

Each party outputs a value m and a grade in \{0,1,2\}

If the dealer is non-faulty then all non-faulty output (m,2)

If a non-faulty outputs (m’,2) then all non-faulty output (m’,g) with g>0

(If two non-faulty have grade 1 then have same value)
Gradecast protocol (MF88)

round 1: Dealer P* <sends m> to all
round 2: Party sends <echo1 m> to the first message it receives from the primary
round 3: If party gathers n-f echo1 it sends <echo2 m>

End of round 3:
- Grade 2: If party gathers n-f echo2; otherwise
- Grade 1: if party gathers f+1 echo2; otherwise
- Grade 0 (default value)
Gradecast proof (MF88)

round 1: Dealer P* <sends m> to all

round 2: Party sends <echo1 m> to the first message it receives from the primary

round 3: If party gathers n-f echo1 it sends <echo2 m>

End of round 3:
• Grade 2: If party gathers n-f echo2; otherwise
• Grade 1: if party gathers f+1 echo2; otherwise
• Grade 0 (default value)

Echo1 causes non-equivocation -> any two grade 1 must have same value

Non-faulty dealer -> all non-faulty have (m,2)

Non-faulty has (m’,2) -> all non-faulty have at least f+1 echo2 -> all non-faulty have (m,g) with g>0
Moderated VSS [KK06]

MVSS from VSS

Dealer P*

Moderator P**

Take any VSS that uses broadcast only in share phase

Replace <broadcast m by party j> with:
 - Party j runs gradecast (m)
 - The moderator P** takes the value m’ of the gradecast and runs gradecast (m’)

Outcome for party i:
 - Let (m,g) be the outcome of the first gradecast
 - Let (m’,g’) be the outcome of the first gradecast
 - If g’<2 or (g’=2 and g=2 and m≠m’) then set OK=false
Proof for Moderated VSS

If OK=true for any non-faulty then VSS properties hold
 • Because all see the moderator’s value and the moderator's value is consistent with any non-faulty broadcaster

If the moderator is non-faulty then all non-faulty have OK=true
 • From the grade cast properties of an honest sender
Oblivious Leader Election
OLE from MVSS

For each i, j, do a MVSS with dealer i and moderator j (say random value in \(n^4 \))
The secret ballot for j will be the sum mod \(n^4 \) of all the VSS where j is a moderator
Reveal all the secret ballots for all parties
But if for some moderator j you see OK=false in any MVSS then set secret ballot to 0
Choose the leader to be the party with the highest secret ballot
With large probability there are no collisions, and then with constant probability a non-faulty is elected
Its all about the adversary!
Can you solve Byzantine Agreement with sub-quadratic messages?

Static Adversary vs **Adaptive** Adversary

Byzantine agreement with sub quadratic messages is *easy* against a **Static** adversary

- With randomization
 - Just use the US jury system: its a scalable consensus mechanism!

1. Choose a random poly-log size committee
2. Since the adversary is static, it controls a small fraction of the committee
3. Run Byzantine Agreement in the committee and then report back to everyone the verdict
Dolev Reischuk [82]

Cannot solve Broadcast against omission adversary with just \((f/2)^2\) messages

Assume that if a party receives no message it never decides 1

- Either decides 0 or does not decide

Proof approach:

- Create World 1 where all honest decide 1 (with \(f/2\) corrupt called \(C\))
- Create World 2 with \(f/2\) more corrupt \(X\) and one old corrupt \(p\) becomes honest
 - For all honest (but \(p\)) in world 2: world 1 and world 2 are indistinguishable
 - Party \(p\) receives no messages

<table>
<thead>
<tr>
<th>World 1</th>
<th>World 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Set (</td>
<td>C</td>
</tr>
<tr>
<td>All honest decide 1</td>
<td>Additional set (</td>
</tr>
</tbody>
</table>

Honest \(p\) receives no messages
For all honest (but \(p\)) in world 2: worlds 1, 2 are indistinguishable
Dolev Reischuk [PODC 1982]

Cannot solve Broadcast against omission adversary with just \((f/2)^2\) messages

World 1: Corrupt a set \(C\) of \(f/2\) parties:
- Run them as honest; except
- For each member of \(C\)
 - Block all communication from other parties in \(C\)
 - Block the first \(f/2\) message from parties not in \(C\)
- Validity: all honest parties decide 1

Assume protocol sends just \((f/2)^2\) messages
- So one member, \(p\) of \(C\) must get at most \(f/2\) message from a set of parties \(X\) not in \(C\)

World 2: un-corrupt \(p\) and corrupt \(X\) as follows:
- Run \(X\) as honest; other than:
 - Block the first \(f/2\) messages to \(p\) from \(X\)
- All other honest cannot distinguish - must decide 1
- Honest party \(p\) hears nothing – cannot decide 1
Thank you
Moving to asynchrony

Responsiveness: we added a key round

MVSS does not work:
 • $n > 4f$, constant time [MF]
 • AVSS constant time, but has non-zero deadlock [CR]
 • ShunningAVSS no deadlock but polynomial time [ADH]

Attach $f+1$ secrets. Honest attach only after the RB works