Zero-Knowledge from MPC-in-the-Head: Constructions and Applications

Carmit Hazay
Faculty of Engineering, Bar-Ilan University
Taxonomy of Proofs

1. P vs NP

2. Interactive vs Non-interactive

3. Trusted setup vs No setup (transparent)

4. ZK vs (only) Soundness

5. Succinct vs Non-succinct

6. Public-Key Crypto vs (only) Symmetric-Key Crypto
Taxonomy of Proofs

1. P vs NP

2. Interactive vs Non-interactive

3. Trusted setup vs No setup (transparent)

4. ZK vs (only) Soundness

5. Succinct vs Non-succinct

6. Public-Key Crypto vs (only) Symmetric-Key Crypto
Taxonomy of Proofs

1. P vs NP
2. Interactive vs Non-interactive
3. Trusted setup vs No setup (transparent)
4. ZK vs (only) Soundness
5. Succinct vs Non-succinct
6. Public-Key Crypto vs (only) Symmetric-Key Crypto
Taxonomy of Proofs

1. P vs NP

2. Interactive vs Non-interactive

3. Trusted setup vs No setup (transparent)

4. ZK vs (only) Soundness

5. Succinct vs Non-succinct

6. Public-Key Crypto vs (only) Symmetric-Key Crypto
Taxonomy of Proofs

1. **P vs NP**

2. **Interactive vs Non-interactive**

3. **Trusted setup vs No setup (transparent)**

4. **ZK vs (only) Soundness**

5. **Succinct vs Non-succinct**

6. **Public-Key Crypto vs (only) Symmetric-Key Crypto**
Taxonomy of Proofs

1. P vs NP

2. Interactive vs Non-interactive

3. Trusted setup vs No setup (transparent)

4. ZK vs (only) Soundness

5. Succinct vs Non-succinct

6. Public-Key Crypto vs (only) Symmetric-Key Crypto
Taxonomy of Proofs

1. P vs NP
2. Interactive vs Non-interactive
3. Trusted setup vs No setup (transparent)
4. ZK vs (only) Soundness
5. Succinct vs Non-succinct
6. Public-Key Crypto vs (only) Symmetric-Key Crypto
Prior Approaches to “Practical” ZK

1. **Probabilistically Checkable Proofs (PCPs)** [BFLS91, Kil92, Mic94, ALMSS98, AS98, DL08, GLR11, CMT12, BC12, DFH12, BCCT12, IMS12, Tha13, VSBW13], Interactive PCPs [KR08], Interactive Oracle PCPs [BCGT13, BCS16, RRR16, BCGRS16, BCCGGHPRSTV17, BBHR17]

 - No setup
 - High prover’s complexity

2. **Linear PCPs** [IKO07, Gro10, GGPR13, BCIOP13, Gro10, Lip12, SMBW12, Lip13, PGHR13, BCGTV13, FLZ13, SBBPW13, Lip14, DFGK14, KPPSST14, ZPK14, CFHKKNPZ15, WSRBW15, BCTV14, BBFR15, Groth16, FFGKOP16, BFS16, BISW17, GM17, BBBPWM18]

 - Short Proofs
 - Fast Verification
 - Heavy Public-Key Crypto
 - Trusted Setup
 - Quantum Insecure

3. **Interactive Proofs (IP)** [GKR08, ZGKPP17-18, WTSTW18]

 - No setup
 - Moderate Public-Key Crypto

4. **Multiparty Computation (MPC)** [IKOS07, GMO16, CDGORRSZ17, AHIV17, KKW18]
Zero-Knowledge from MPC [IKOS07]

- Goal: ZK proof for an NP-relation $R(x,w)$

- Towards using MPC:
 - Define n-party functionality
 $$g(x; w_1,...,w_n) = R(x, w_1 \oplus ... \oplus w_n)$$

- Use OT-based MPC
 - Security in semi-honest model
Zero-Knowledge from MPC [IKOS07]

Given MPC protocol π for $g(x; w_1, \ldots, w_n) = R(x, w_1 \oplus \ldots \oplus w_n)$.

Commit to views V_1, \ldots, V_n

Random i, j

Open views V_i, V_j

Accept iff output=1 & V_i, V_j are consistent.
Analysis

- Completeness: √
- Zero-knowledge: by 2-security of π and randomness of w_i, w_j
Analysis

Soundness: Suppose \(R(x,w) = 0 \) for all \(w \)
either (1) \(V_1, \ldots, V_n \) consistent with protocol \(\pi \)
or (2) \(V_1, \ldots, V_n \) not consistent with \(\pi \)

- (1) outputs = 0 (perfect correctness)
 - verifier rejects
- (2) for some \((i,j)\), \(V_i, V_j \) are inconsistent
 - verifier rejects with prob. \(\geq \binom{n}{2} \)
Analysis

\[w = w_1 \oplus \ldots \oplus w_n \]

commit to views \(V_1, \ldots, V_n \)

random \(i, j \)

open views \(V_i, V_j \)

accept iff output = 1

&

\(V_i, V_j \) are consistent

Communication complexity:
\[\approx (\text{comm. complexity} + \text{rand. complexity} + \text{input size}) \text{ of } \pi \]
\textbf{ZKB\textsubscript{oo}}: Faster Zero-Knowledge for Boolean Circuits

[\textit{GMO16}]

Post-Quantum Zero-Knowledge and Signatures from Symmetric-Key Primitives (\textbf{ZKB++})

[\textit{CDGORRSZ17}]
Zero-Knowledge from 3-Party GMW [IKOS07,GMO16]

Use 3-party GMW protocol π^{OT} for

$$g(x; w_1, w_2, w_3) = R(x, w_1 \oplus w_2 \oplus w_3)$$

commit to views V_1, V_2, V_3

random i, j

open views V_i, V_j

accept iff output=1

&

V_i, V_j are consistent

soundness error $\leq 2/3$
Extensions

• **Variant 1**: Use 1-secure MPC
 • Commit to views of parties + channels
 • Open one view and incident channels

• **Variant 2**: Directly get 2^{-k} soundness error via security in malicious model
 • $n = O(k)$ parties
 • $\Omega(n)$-security with abort
 • Broadcast is “free”

• Handle MPC with error via coin-flipping
Prior Approaches to “Practical” ZK

1. **Probabilistically Checkable Proofs (PCPs)** [BFLS91, Kil92, Mic94, ALMSS98, AS98, DL08, GLR11, CMT12, BC12, DFH12, BCCT12, IMS12, Tha13, VSBW13], Interactive PCPs [KR08], Interactive Oracle PCPs [BCGT13, BCS16, RRR16, BCGRS16, BCCGGHPRSTV17, BBHR17]

 - No setup
 - High prover’s complexity

2. **Linear PCPs** [IKO07, Gro10, GGPR13, BCIOP13, Gro10, Lip12, SMBW12, Lip13, PGHR13, BCGTV13, FLZ13, SBBPW13, Lip14, DFGK14, KPPSST14, ZPK14, CFHKKNPZ15, WSRBW15, BCTV14, BBFR15, Groth16, FFGKOP16, BFS16, BISW17, GM17, BBBPWM18]

 - No setup
 - Short Proofs
 - Fast Verification
 - Heavy Public-Key Crypto
 - Trusted Setup
 - Quantum Insecure

3. **Interactive Proofs (IP)** [GKR08, ZGKPP17-18, WTSTW18]

4. **Multiparty Computation (MPC)** [IKOS07, GMO16, CDGORRSZ17, AHIV17, KKW18]

 - No Setup
 - Fast Prover
 - Post Quantum Secure
 - Everything Linear
Ligero: Lightweight Sublinear Arguments Without a Trusted Setup [AHIV17]
High-Level Overview

High level approach: use **MPC in the head** [IKOS07]
- Transform Honest-majority MPC to ZK
- Optimized and implemented in [GMO16, CDGORRSZ17]

STOP Can the communication be sublinear?
Communication complexity of (i.t.) MPC > circuit size

Key insight: Communication per party can be sublinear [DI06, IPS09]
High-Level Overview

High level approach: use **MPC in the head** [IKOS07]
- Transform Honest-majority MPC to ZK
- Optimized and implemented in [GMO16,CDGORRSZ17]

Key insight: Communication per party can be sublinear [DI06,IPS09]
Main Result

Sublinear ZK arguments without trusted setup

- Simple, concretely efficient
- Symmetric-crypto only (e.g., SHA256)
- Post-quantum secure

First “sublinear” arguments for NP that avoid both complex PCP machinery and public-key crypto
Main Result

Sublinear ZK arguments without trusted setup

Concretely:

- **40-bit security**: comm. is $0.5\sqrt{|C|}$ kb in the Boolean case
- Can be made non-interactive via Fiat-Shamir
- Can handle Boolean or arithmetic circuits
- Prover computation: Merkle Tree ($O(\sqrt{|C|})$ leaves) + $O(\sqrt{|C|})$ FFT’s of $O(\sqrt{|C|})$ evaluations
Eg, SHA256 certification with 40-bit security:
i.e. For statement y, prover proves knowledge of x such that SHA256(x) = y

<table>
<thead>
<tr>
<th></th>
<th>Linear PCP [Pinocchio]</th>
<th>ZKBoo/++ [CDGORRSZ17]</th>
<th>Ligero</th>
</tr>
</thead>
<tbody>
<tr>
<td>Communication</td>
<td>~ bytes</td>
<td>200 KB</td>
<td>34 KB</td>
</tr>
<tr>
<td>Prover time</td>
<td>mins</td>
<td>~33ms</td>
<td>140ms</td>
</tr>
<tr>
<td>Verifier time</td>
<td><10ms</td>
<td>~38ms</td>
<td>60ms</td>
</tr>
<tr>
<td>Asymptotic Communication</td>
<td>~ bytes</td>
<td>O(</td>
<td>C</td>
</tr>
<tr>
<td>Trusted Setup</td>
<td>YES</td>
<td>NO</td>
<td>NO</td>
</tr>
<tr>
<td>Amortization</td>
<td>NA</td>
<td>NO</td>
<td>YES</td>
</tr>
</tbody>
</table>
Proof Schematic

Commitment

Challenge

Response

Challenge

Response

Prover

Verifier
Boolean: $X = 2$, AND/XOR
Arithmetic: $X = 3$, AND

$a \cdot b \geq X \cdot \#gates$
Prover

Verifier
Root(□)

Prover

Verifer

f₁, f₂, f₃, ...

O(b)
Row-wise

Prover

Verifier

Root

$\mathbf{f_1, f_2, f_3, \ldots}$

$\mathcal{O}(b)$
Row-wise

Prover

Verifier

\[\text{Root(□)} \]

\[f_1, f_2, f_3, \ldots \]

\[i_1, i_2, i_3, \ldots \]

\[O(b) \]
Prover

Verifier

Root(f)

\[f_1, f_2, f_3, ... \]

\[i_1, i_2, i_3, ... \]
Proof Length: \(O(b + \kappa \cdot a) \)

Computation: \(O(a) \) FFTs of \(O(b) \)
The Underlying MPC Protocol

1. **Input sharing phase**
 - Sharing of extended witness
 - Server’s view is a matrix column

2. Local computation
 - Proofs of correctness
Idea 1: Shamir Secret Sharing [S79]

Pick a random t-degree polynomial p such that $p(0)$ is secret
Distribute $p(1), \ldots, p(n)$
t shares do not reveal the secrets
$n-t/2$ modified shares do not affect correctness
Idea 1: Packed Secret Sharing [FY92]

Pick a random $t+\ell$-degree polynomial p such that $p(0), p(-1), \ldots, p(-\ell)$ are secrets
Distribute $p(1), \ldots, p(n)$ $t+\ell$ shares do not reveal the secrets
Idea 2: Testing Interleaved RS Codes

Prover

Verifier

\[z(x) = \sum_{i} f_i p_i(x) \]

\[f_1, f_2, f_3, \ldots \]

\[i_1, i_2, i_3, \ldots \]
Idea 2: Testing Interleaved RS Codes

\[z(x) = \sum_{i} f_i p_i(x) \]

Check
- \(z(x) \) is of degree \(t+\ell \)
- \(z(i) = \sum_{i} f_i p_i(i) \)
Idea 3: Testing Quadratic Constraints
Idea 3: Testing Quadratic Constraints
Idea 3: Testing Quadratic Constraints

\[z(x) = \sum_{i} f_i(p_i(x)q_i(x) - r_i(x)) \]

Prover

Verifier
Idea 3: Testing Quadratic Constraints

\[z(x) = \sum_{i} f_i(x)q_i(x) - r_i(x) \]

Prover

\[i_1, i_2, i_3, ... \]

Verifier

Check

\[z(i) = \sum_{i} f_i(p_i(i)q_i(i) - r_i(i)) \]
Post-Quantum Signatures from NIZK [CDGORRSZ17, KKW18]
Obtaining (Post Quantum) Signatures from NIZK

The signature scheme:

PK: \(y = \text{PRF}_k(0^k) \) where PRF is a block cipher

Sig(m): a proof for \((y,k)\) on a challenge \(H(a,m)\)

Advantages:

• Based on symmetric-key primitives
• Easily extendable to ring and group signatures
High-Level Overview [KKW18]

Use MPC-in-the-head in the **preprocessing model**
- Check consistency of preprocessing using cut-and-choose
High-Level Overview [KKW18]

MPC-in-the-head can be instantiated with dishonest majority protocols
- Semi-honest instances for generating correlated randomness
- Implies two versions of 5/3 rounds
Removing Interaction via the Fiat-Shamir Transform

Analysis can be extended to any constant round public-coin protocol and beyond [BCS16]
Scalable Transparent Proofs (STARK,Aurora)

• Proof length and round complexity scale with $\log |C|$ [BBHR18,BCRSVVW18]

• Prover’s running time better in Ligero
Prover

Thank you!

Verifier

That’s a true statement!