Compilers for Zero-Knowledge:
An Overview

Yuval Ishai
Technion

e 4

M Srg)

9th BIU Winter School on Cryptography

Broad Motivation

« ZK researchis a big party
— Many motivating applications
— Many challenging questions
— Many exciting results
@Ietpro@

* Big party — Big mess ?

* This talk: advocating a modular approach
— Separate “information-theoretic” and “crypto” parts
— General cryptographic compilers (IT — crypto)
— General information-theoretic compilers (IT — IT)

Boolean circuit
Arithmetic circuit
RAM
QSP,QAP,SSP
R1CS
TinyRAM

Different kinds

(coming up)

Crypto assumptions/
Generic models

NP relation R(x,w)

-

Convenient Representation

Computational model

-

Information-Theoretic Proof System

“ZK-PCP”

crypto compiler

ZK Proof/Argument

MPC
protocols

IT
Compilers

Carmit’s
talk

N
=

NP relation R(x,w)

~

Representation

Computational model

N

Information-Theoretic Proof System

“ZK-PCP”

m crypto compiler

ZK Proof/Argument

Why?

« Simplicity
— Break complex tasks into simpler components
— Easler to analyze and optimize
— Potential for proving lower bounds

* Generality
— Apply same constructions in different settings
— Research deduplication, less papers to read/write

« Efficiency
— Port efficiency improvements between settings
— Mix & match different components
— Systematic exploration of design space

ZK Z00

(lgnoring assumptions for now...)

Qualitative features Quantitative features
* Interactive? Communication

* Succinct? * Prover complexity
 Fast verification? « Verifier complexity

 Public verification?
* Public input?

Major commercialization efforts

e NP vs. P? Standardization process
S zkproof.org
* Trusted setup? 2"d workshop: April 10-12

* Symmetric crypto only?
. Post gquantum? [Optimal ZKP protocol?}

Food for thought...

 Which verifier Is better?
— V1: SHA256 hash
— V2: PKE decryption

* V2 can be more obfuscation-friendly! [BISW17]
— Relevant complexity measure: branching program size
— Motivated “lattice-based” designated-verifier SNARKsS
— Promising avenue for practical general-purpose obfuscation

« Similar: MPC-friendly prover, etc.

Back to 20t Century

Theorem [GMwW8E6]:
Bit-commitment — ZKP for all of NP

Theorem [GMwW86+Naor89+HILL99]:
One-way function — ZKP for all of NP

Theorem [Oow93]:
ZKP for “hard on average” L in NP — i.0. one-way function

Are we done?

ZKP for 3-Colorabllity

[GMW86]

* Prover wants to prove that a given
graph is 3-colorable

“0 (
‘ﬂ.l%féc
I @

ZKP for 3-Colorability

* Prover wants to prove that a given
graph is 3-colorable

— X=graph w=coloring

e —a—®
"0 ® o ¢

ZKP for 3-Colorability

* Prover randomly permutes the 3 colors
(6 possibilities)

< @-@ 0-0 0-®

e e
DA

ZKP for 3-Colorability

* Prover randomly permutes the 3 colors
(6 possibilities)

< @-@ 0-0 0-®

o e
DA S

ZKP for 3-Colorability

* Prover separately commits to color of each
node and sends commitments to Verifier

/</\

N\

ZKP for 3-Colorability

* Verifier challenges Prover by selecting a
random edge

/</\

N\

ZKP for 3-Colorability

* Prover sends decommitments for opening
the colors of the two nodes

B PR
PV{. M ARG

ST SN

ZKP for 3-Colorability

* Verifier accepts if both colors are valid and
are distinct (otherwise it rejects).

* Repeat O(|E|) times to amplify soundness

S

N\

|ssues

« Security proof more subtle than it may seem
— Need to redo analysis of Hamiltonicity-based ZK?
e Two sources of inefficiency
— Karp reduction
— Soundness amplification (+ many rounds)

< A
. %
@ K7 4 DA

Abstraction to the rescue...

= 5

S
W. N i

ST SN

Information-Theoretic Proof System: ZK-PCP

Prover: (Xx,w) -«

0= 23222 n32i21f21f2(f3ff13f1f2(1

o

Verifier

PV{. V'-‘AFV{’

k

ST SN

Information-Theoretic Proof System: ZK-PCP

Prover: (Xx,w) -«

0= 23222 n32i21f21f2(f3ff13f1f2(1
Verifier
« Simple security definition « Clean efficiency measures

« Completeness
« Perfect (public-coin) ZK
e Soundnesserror e
(amplified via parallel repetition)

Alphabet size
Query complexity
Prover computation
Verifier computation

Information-Theoretic Proof System: ZK-PCP

Prover: (X,w) » «

2

1

3

1

2

1111

3

1

o

Verifier

Crypto compilers

<7 PW99)

+Stat-binding

commit
[GMW86,

V4

ZK in plain model

+Stat-hiding
commit

[GK96]

+Random
oracle

[FS86,Mic00]

N

NIZK in ROM

Information-Theoretic Proof System:

Prover: (Xx,w) -«

T =— (2322123122213 112113|1f|2]1

/ Ron’s talk: A
Verifier NIZK in _
L Hidden Bits Model)

+Stat-binding | +Stat-hiding +Trapdoor
Crypto compilers commit commit permutation

[GMW 86, [GK96] [FLS90]

N\~ PW99] N4 N

ZK in plain model

NIZK in CRS model

Information-Theoretic Proof System: ZK-PCP

Prover: (Xx,w) -«

0= 23222 n32i21f21f2(f3ff13f1f2(1

o

Verifier

Better parameters?
Simpler?

Less “magical’?

IT Compllers:
MPC — ZK-PCP

i!-.\-§
-"-'b
e,

&
N
>

XX

b

We

A
,;:A,

MPC = ZK-PCP

[IKOSO07]
Given MPC protocol for f(wq,...,w,) = R(w,®...& w,)

Verifier
i accept iff
Vs . — output=1
T [y, | —— &
ViV, are
- consistent

Applications

Simple ZK proofs using:

— (2,5) or (1,3) semi-honest MPC [BGW88,CCD88,Maurer02]

— (2,3) or (1,2) semi-honest MPCPCT [vao86,GMW87,GV87,GHY87]
— Practical! [GM0O16,CDG+17,KKW18] = post-quantum signatures!

ZK proofs with O(|R|)+poly(k) communication
— MPC from AG codes [CC05,DI05]

Many good ZK protocols implied by MPC literature
— MPC for linear algebra [CDO01,...]
— MPC over rings [CFIK03]or groups [DPSWO07,CDI+13]

Going (somewhat) sublinear! [AHIV17] - Carmit's talk

Going fully sublinear

Traditional PCPs

Xel = dn Pr[Verifier accepts n] =1
XL = vrn* Pr[Verifier accepts n*]<1/2

PCP Theorem [AS,ALMSS,Dinur]:

NP statements have polynomial-size PCPs in which the
verifier reads only O(1) bits.

— Can be made ZK with small overhead [KPT97,IW04]

Still need crypto compiller...

Verifier Prover

Input x ZK-PCP ne{0, 1}polylxwD)

ACC/REJ

Crypto Compiler
[Kil93,Mic94]

/ Merkle Tree construction \

H = collision resistant hash function
H:{0,1}*>{0,1}«

T T
o (&) o

o'oo
Fmy v v v ¥

HEEHH

)
v

.+

H |[H
Y S
v

v
H

=

0
O
=

/

Limitations

withess

ERRERRERRERE

PCP Encoding

Computationally
Heavy!

NN E A AR

Potential

Cryptographic
Hashing

HH

workaround
[LM18,BBF18]

Sub-optimally
succinct

+ opening PCP queries

Relaxing PCP model 1: Interaction

Prover

Ty = 1131|213 1|2 Lf1|3]|1]3]1]f2

o

Verifier
Challenge

T, = |1 3| 2ff2f[2][3]f2

2111113111311
Interactive PCP [KR08,GIMS10]
|OP [BCS16,RRR16]
Verifier
Challenge

Relaxing PCP model 2: Linear PCP
[ALMSS98,1KO07,BCIOP13]

over a (large)
finite field F

Prover

T = (4311218113122 (9(I3|12|f6]1|2]||l1

Inner product

d. = |5|13|efl2f|i1i3fj1]|2|f1|f1]{6]f1]f3]1]/8]1
o = 7113|1214 (1SL|217f11{31f1)f7]f1]2]1
s = [1|[2)1 1)1 2|L{Io||11f2]I5]| 1|4 1]{3][1]|3]1
a, Verifier
X
Ay
>ACC/REJ
s

Advantages of Linear PCPs

e Simple!

— Hadamard PCP: T = (W, W x W)

« Short, efficiently computable
— O(|C])-size, quasi-linear time via QSP/QAP [GGPR13, ...]
* Negligible soundness error with O(1) queries
— Reusable soundness
Pr[rt” is accepted] is either 1 or O(1/|F|)
— Maximal succinctness
— In fact, 1 query is enough! [BCIOP13]

Crypto Compilers for Linear PCPs

« First generation [IKO07,G110,Gro10,SMBW12,...]

— Standard assumptions
 Linearly homomorphic encryption, discrete log

— Interactive, one-way-succinct/somewhat succinct
— ldea: use succinct vector-commitment with linear opening

e Second generation [Grol0, Lip12,GGPR13, BCIOP13,...]
— Strong “knowledge” or “targeted malleability” assumptions
— Non-interactive using a (long, structured) CRS
— Publicly verifiable via pairings
— ldea: include “encrypted queries” in CRS

Crypto Compiler: First Attempt

Prover

T = 4311218311211 2)(9(3|1]|6]l1] 2

d. = |5|13|16fl2f|L{iI3fiLj2|j1{|1]|6]j1]{3]f1]f8
o = 7113|1214 (1SL[|2]|7|f11{31f1]f7]1]2
s = (1211121 9|f1]f2]|I5fIL[14]f1](3]1] 3
a, Verifier
X
Ay
>ACC/REJ
s

q1
q;
3

Crypto Compiler: First Attempt
CRS

Prover

121831112112 ||9113||1]|6]1]]2

Verifier

> ACC/REJ

Crypto Compiler: First Attempt

CRS

- INEEEEEENE NN
4, = ..Enearly homomorphic encryption]... -
.- INNENENENNEEEEEE

Prover

T = (4311281131212 (9(1312if6]1|2]|l1

a, Verifier

Crypto Compiler: First Attempt

CRS

.= INNINNNNENNENEEE
4, = ..E early homomorphic encryption]... [|
;= IHIIN\UENEEREEEEEN

Prover
T = 43128}\ \l219316121
éroblem 1: May allow more than just linear functions! \

a, Solution 1: Assume it away: “linear-only encryption”

« Anatural instance of targeted malleability [BSW12]

ay « Plausible for most natural public-key encryption schemes
... iIncluding post-quantum ones [Reg05,BISW17]

as \ « Win-win flavor /

Crypto Compiler
CRS

- INNNENNENEENEEEE

— ..Enearly homomorphic encryptlon]... [

Prover

NEREBAREEREEREE

Problem 2: Prover can apply different rr; to each g; or even combine g;

Solution 2: Compile LPCP into a proof system that resists this attack
» Linear Interactive Proof (LIP): 2-message IP with “linear-bounded” Prover

|

* |T compiler: LPCP - LIP via a random consistency check [BCIOP13]

_

Crypto Compiler

CRS

qz — ..Enearly homomorphic encryptlon]...

(3 =

T = |[4]3 3|1

2

1

9

\

/

Problem 3: Only works in a designated-verifier setting

a
SEEEEEEEEEEEEEE’

Prover

Solutions 3;

» Look for designated verifiers around your neighborhood

"

\

LPCP with deg-2 decision + “bilinear groups” = public verification [Gro00,BCIOP03]

_/

Combining the Two Relaxations: Linear IOP

Variant: ILC model

Prover [BCGGHJ17]
7'[1:1312131211313121
q1:5362131211613181

Verifier

Challenge
7'[2:1312131211313121
q2:7312431271317121

Challenge

Implicit in interactive proofs for P
[GKRO8,RRR16]

Fully Linear PCP/IOP
[BBCGI19]

« Suppose statement x is known to prover but is

— Secret-shared between two or more verifiers
— Partitioned between two or more verifiers

* Goal: strong ZK, hiding x as well

» Tool: fully linear ZK proof systems
— Only allow linear access to x: g; applies jointly to (x,)

— Can be naturally compiled to ZK in above settings
 Also with linearly encrypted or committed input
« Implicitly used in previous systems [BGI116,CB17]

Fully Linear PCP/IOP
[BBCGI19]

« Constructions: NP languages

— Standard LPCPs for NP are fully linear, but big proofs
— Meaningful also for “simple” languages in P!

« Sublinear-size proofs for “simple” languages
— Implicit in interactive proofs [GKR0O8,RRR16,NPY18]

— New constructions for low-degree polynomials
« E.g.,testthatx € F™isin {0,1}"

Conclusions

* Modular approach to efficient ZKP design

— Information-theoretic ZK-PCP + crypto compiler
* point queries vs. linear queries
* non-interactive vs. interactive

* Applies to most efficient ZKP from the literature
— In a sense inherent to “black-box” constructions [RV09]
— but not to non-bb constructions [Val09,BCCT13,BCTV14]

 Lots of room for further progress
— Better PCPs (and lower bounds)
— Better crypto compilers
— Better IT compilers

The research leading to these results has received
funding from the European Union's Horizon 2020
Research and Innovation Program under grant
agreement

no. 742754 — ERC — NTSC

European

:'ﬁ 2 Research
',1::'.e rc Council
- " o L] --'

i @

[]
LA™l BN
