NON-BLACK-BOX ZK
(Barak’s Protocol)

ALON ROSEN
IDC HERZLIYA
Goal: construct CZK argument $\forall L \in \text{NP}$

- with negligible soundness
- a constant number of rounds
- and public-coin

Need to address:

- How to use V^*’s code (BB impossibility)
- V^*’s running time is not a-priori bounded
• No $L \not\in \text{BPP}$ has a \textbf{black-box ZK} protocol that is:
 • constant-round
 • negligible-soundness
 • public-coin
• So for $L \not\in \text{BPP}$ must use a \textbf{non-black box simulator}
• On the one hand, $\forall V^* \exists S$ should be easier than $\exists S \forall V^*$
• On the other hand, where do we even begin?
 • Reverse engineering V^* is difficult!
 • \textbf{Key insight}: there is no need to reverse engineer
 • Enough for S to prove that he possesses V^*’s code
Theorem [B’01]: If CRH exist, every \(L \in \text{NP} \) has a constant-round, public-coin, negligible-soundness, ZK argument.

- **Idea**: enable usage of verifier’s code as a “fake” witness
- In the real proof, the code is \(V \)’s random tape
- In simulation, the code is \(V^* \)’s “next-message function”
- Since \(P \) does not have access to \(V \)’s random tape in real interactions, this will not harm soundness
- The simulator \(S \), on the other hand, will be always able to make verifier accept since it obtains \(V^* \)’s code as input
Collision-Resistant Hash Functions

Definition: \(H_k : \{0,1\}^* \rightarrow \{0,1\}^k \) is \((t, \varepsilon)\)-CRH if \(\forall \) time-\(t \) \(A \)

\[Pr[A \text{ finds a collision in } h \in_R H_k] \leq \varepsilon \]

Collision: \(x \neq x' \) such that \(h(x) = h(x') \)

Candidate CRHs:

- **Discrete-log-based:** \(g^{x_L} h^{x_R} \mod P \)
- **SIS:** \(Ax \mod q \)
- **SHA:** \(h(x_L, x_R) \)

Later: \(H_k : \{0,1\}^* \rightarrow \{0,1\}^k \) from \(h : \{0,1\}^{2k} \rightarrow \{0,1\}^k \)
Constant-Round ZK Arguments for NP
The Basic Idea

witness \(w \) \[P \] \(x \in L \) \[V \]

\[\begin{align*} c &= \text{Com}(0^k) \\ r &\in R \{0,1\}^{2n} \end{align*} \]

WIAOK statement: \(\exists w, \pi, z \text{ s.t.} \)

1. \((x, w) \in R_L \text{ or} \)
2. "\(c \) is a commitment to a program \(\pi \text{ s.t. } \pi(z) = r \) within \(t(n) \) steps"

NTIME(\(t(n) \)) statement

Intuition:

- In the real interaction \(P \) cannot predict the random string \(r \)
- In simulation, \(r = V^*(c) \) so \(S \) can set \(\pi = V^* \) and \(z = c \)
Completeness

Use \(w \) to prove

\[
\text{WIAOK statement: } \exists w, \pi, z \text{ s.t.}
\begin{align*}
1. \quad (x, w) &\in R_L \text{ or} \\
2. \quad \text{“} c \text{ is a commitment to a program } \pi \text{ s.t. } \pi(z) = r \text{ within } t(n) \text{ steps”}
\end{align*}
\]

\[
\begin{align*}
\text{witness } &w \quad \text{P} \quad x \in L \quad \text{V} \\
\end{align*}
\]

\[
\begin{align*}
c = \text{Com}(0^k) \\
r
\end{align*}
\]

ACCEPT
Soundness

WIAOK statement: \(\exists w, \pi, z \text{ s.t.} \)

1. \((x, w) \in R_L \) or
2. "\(c \) is a commitment to a program \(\pi \) s.t. \(\pi(z) = r \) within \(t(n) \) steps"

\[
\forall \pi, Pr_r[\exists z \in \{0,1\}^n, \pi(z) = r] \leq 2^n \cdot 2^{-2n} = 2^{-n}
\]
Zero-Knowledge

Simulator S \hspace{1cm} $x \notin L$ \hspace{1cm} V^*

\[
\begin{align*}
&c = \text{Com}(V^*) \\
r &\leftarrow r = V^*(c)
\end{align*}
\]

Use
$\pi = V^*$
$z = c$

to prove

WIAOK statement: $\exists w, \pi, z$ s.t.
1. $(x, w) \in R_L$ \textbf{or}
2. “c is a commitment to a program π s.t. $\pi(z) = r$ within $t(n)$ steps”

Cannot distinguish if 1 or 2

By definition, $\pi(z) = V^*(c) = r$
• Simulator runs in strict polynomial time
• Possession of V^* is sufficient. No reverse engineering!

First technical issue:
• V^*’s size is $\text{poly}(n)$, but not a-priori bounded
• In particular, how can $c = \text{Com}(V^*)$ accommodate V^*?
• **Solution**: use $h: \{0,1\}^* \rightarrow \{0,1\}^k$ to compute $\text{Com}(h(V^*))$

Second technical issue:
• Running time $t(n)$ of V^* not bounded by any fixed $\text{poly}(n)$
• So $\text{NTIME}(t(n))$ relation in WIAOK is not an NP-relation
• **Solution**: WIAOK that handles $\text{NTIME}(n^{\omega(1)})$ relations
A constant-round ZK Argument

Witness w P $x \in L$ V

$h \leftarrow h$

$c = \text{Com}(0^n) \rightarrow c$

$r \leftarrow r$

WIAOK Statement: $\exists w, \pi, z \text{ s.t.}$

1. $(x, w) \in R_L$ **or**
2. “c is a commitment to $h(\pi)$ where π is a program s.t. $\pi(z) = r$ within $t(n)$ steps”

$H_k : \{0,1\}^* \rightarrow \{0,1\}^k$

$h \in R H_k$

$r \in R \{0,1\}^{2n}$
The Relation R_{SIM}

WIAOK statement: \(\exists w, \langle \pi, s, z \rangle \) s.t.

1. \((x, w) \in R_L\) \textbf{or}
2. \((\langle h, c, r \rangle, \langle \pi, s, z \rangle) \in R_{SIM}\)

\((\langle h, c, r \rangle, \langle \pi, s, z \rangle) \in R_{SIM}:

1. \(|z| \leq |r| - n\)
2. \(c = \text{Com}(h(\pi), s)\) \textbf{and}
3. \(\pi(z) = r\) \textbf{within } t(n) \textbf{ steps}
The Universal Language L_U

Goal: handling $\text{NTIME}(t(n))$ statements for $t(n) = n^{\omega(1)}$

Consider the universal language L_U:

$$y = (M, x, t) \in L_U$$

$$\uparrow$$

$$\exists w, M(x, w) = \text{ACCEPT within } t \text{ steps}$$

- Every $L \in \text{NP}$ is linear-time reducible to L_U
- A proof system for L_U enables to handle all NP-statements
- More importantly, a proof system for L_U enables to handle $\text{NTIME}(n^{\omega(1)})$ statements and even beyond (NEXP)
Universal Arguments
Universal Argument Systems

\[y = (M, x, t) \in L_U \iff \exists w, M(x, w) = \text{ACCEPT in } t \text{ steps} \]

Definition [K’91, M’91, BG’02]: A universal argument system for \(L_U \) is a pair \((P, V)\) such that \(\forall y = (M, x, t)\):

Efficient verification: \(V\) runs in \(\text{poly}(|y|)\) time

Completeness: If \(y \in L_U \), then \(\Pr[(P, V) \text{ accepts } y] = 1 \)

Moreover, \(P \) runs in time \(\text{poly}(t)\)

Computational soundness: If \(y \notin L_U \), then \(\forall \text{PPT } P^* \)

\[\Pr[(P^*, V) \text{ accepts } x] \leq \text{neg}(n) \]

Theorem: If CRH exist, \(L_U \) has a universal argument
Building block: PCP Proof System

Makes use of a PCP[\(O(\log), \text{poly}\)] system for \(L_U\)

What is a PCP[\(O(\log), \text{poly}\)] proof system?

• It is a PPT \(V_{PCP}\) with access to an oracle \(\pi_y\) that represents a proof for \(y \in L_U\) in redundant form

• \(V_{PCP}\) (non-adaptively) queries \(q\) oracle bits of \(\pi_y\) where

\[
q = \text{poly}(|y|)
\]

• the bit positions are determined by \(V_{PCP}\)‘s coin tosses

• the number of coins tossed by \(V_{PCP}\) is \(O(\log t)\)

• and the length of \(\pi_y\) is

\[
\exp(O(\log t)) = \text{poly}(t)
\]
PCP Reduction

\[y = (M, x, t), w \]

\[\pi_y \]

length = \(\text{poly}(t)\)

\[q = \text{poly}(|y|) \text{ queries} \]

P’s complexity

V’s complexity

the \(q\) queries are determined by

\[V_{\text{PCP}}(r) \text{ where } r \in \{0,1\}^{0(\log t)} \]
Commitment with Local Decommitment

Problem: the PCP is too long to be sent to V in its entirety

Solution: commit to π_y and allow “local decommitment”

H is computationally binding - built using CRH h
The Protocol

\[y = (M, x, t) \in L_U \]

\[H_k: \{0,1\}^* \rightarrow \{0,1\}^k \]

\[h \in_R H_k \]

\[r \in_R \{0,1\}^{O(\log t)} \]

Authenticated replies to \(q \) queries \(V_{PCP}(r) \) with respect to \(c \)

Time

\[poly(q) = poly(|y|) \]
Completeness

Completeness of PCP

Authenticated replies to q queries $V_{PCP}(r)$ with respect to c

$\pi_y \downarrow$ completeness of PCP

$\{\}$

w witness

P $y \in L_U$

V

$\{\}$

h

$c = H(\pi_y)$

r

ACCEPT
Computational Soundness

soundness of PCP and binding of H

Authenticated replies to q queries $V_{PCP}(r)$ with respect to c

Recall: binding of H is computational - built using CRH h
Interlude: Merkle Trees
Merkle Tree

\[h: \{0,1\}^{2k} \rightarrow \{0,1\}^k \quad H(x) \quad H: \{0,1\}^{Nk} \rightarrow \{0,1\}^k \]

\[h(x_L, x_R) \]

\[N = x2^n \quad \log N = n \]
Merkle Tree: Collision Resistance

\[x \neq x', \quad H(x) = H(x') \]

\[x_i \neq x'_i \]

Computationally (globally) binding
Merkle Tree: Local Decommitment

Authentication path:
2 log \(N \) − 1 labels

Computationally (locally) binding

\[H(x) \]
Back to ZK
Arguments for NP
Recall: Barak’s Protocol

\[x \in L \]

\[h \in_R H_k \]

\[r \in_R \{0,1\}^{2n} \]

WIUAOK statement: \(\exists w, \pi, z \text{ s.t.} \)

1. \((x, w) \in R_L\) or
2. “\(c\) is a commitment to \(h(\pi)\) where \(\pi\) is a program s.t. \(\pi(z) = r\) within \(t(n)\) steps”

So far: we only saw how to build UAOK. What about WI?
WI Universal Arguments

\[y \in L_U \]

\[c = \beta \pi_y \]

\[V \]

\[\alpha \]

\[\gamma \]

\[PCF_\delta \text{plies} \]

\[P \]

\[V \]

\[P_{WI} \]

\[y \in L_U \]

\[c = Com(\beta) \]

\[\alpha \]

\[\gamma \]

\[d = Com(\delta) \]

\[V_{WI} \]

WIAOK statement: \(\exists \beta, \delta \text{ s.t.} \)

1. \(c = Com(\beta) \)

2. \(d = Com(\delta) \)

3. \(V(\alpha, \beta, \gamma, \delta) = \text{ACCEPT} \)

Subtle point: actually run \(k \) parallel copies of ZKPOK with constant soundness error
Summary

Saw:
- CZK argument $\forall L \in \text{NP}$
- with negligible soundness
- a constant number of rounds
- and public-coin

Tools:
- Non-black-box simulation
- WI universal arguments
Follow-up Work (2001-2012)

- Resettably-sound ZK [BGGL’01, CPS’13, COPVV’13]
- Constant-round bounded-conc. ZK and MPC [B’01, PR’03]
- Constant-round ZK with strict poly-time sim. [BL’02]
- Simultaneously resettable ZK and MPC [DGS’09, GM’11]
- Constant-round covert MPC [GJ’10]
- Constant-round public-coin parallel ZK [PRT’11]
- Simultaneously resettable WI-POK [COSV’12]
- Constant-round conc. ZK from iO [CLP’13, PPS’13, CLP’15]
- Concurrent secure computation [GGS’15]
New non-BB Techniques

[BP’12]:
- Impossibility for obfuscation \rightarrow non BB simulation
- In particular, no use of PCP

[BKP’15]:
- Homomorphic trapdoors
- Enables to break all Black-Box barriers for e.g. WH
Food for Thought
Efficiency of universal arguments depends on:

- **Number** \(q \) **of oracle queries made by** \(V_{PCP} \) **to** \(\pi_y \)

\[q = poly(|y|) \]

- **Length of** \(\pi_y \) **- depends on number of coins tossed by** \(V_{PCP} \)

\[exp(O(log t)) = poly(t) \]

- **Optimizing params:**
 - Larger alphabet size
 - Trading off prover/verifier time

- **Less modular design and/or other models:**
 - Interactive PCPs/oracle IPs
 - Using homomorphism of commitments
• Can turn Merkle-tree into statistically hiding:
 • Generically
 • Assuming h is a random oracle

Open questions:
• Is $O(qk \log N)$ optimal?
• In practice N can be quite large
• Bulletproofs is $O(q + k \log N)$ but verifier space is N
• Lattices/amortization gets $O(q + k\sqrt{N})$

• Ideally $O(q + k \log N)$ size and verification time
• Define what it means to be secure
• Build a protocol/scheme
• Prove that protocol/scheme satisfies definition

• First feasibility then efficiency
• Relax definitions
History

Rafael Pass
Nir Bitansky
Dakshita Khurana
Omer Paneth

Rachel Lin
Kai-Min Chung
Dustin Tseng
Muthuramakrishnan Venkitasubramaniam

Vipul Goyal
Abhishek Jain
Ivan Visconti
The End

Questions?