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Abstract. In this paper we introduce the new problem of finding the best way to
protect a computer system against cyber and ransomware attacks by choosing an
optimal backup scheme using k storage devices. While in standard backup schemes
it is beneficial to backup as frequently as possible, in the case of sophisticated cyber
attacks any attempt to connect a backup device to an already infected computer is
likely to stealthily corrupt its data and thus make it unusable when the actual attack
happens. Our formalization of the problem casts it as a special case of an online/offline
optimization problem, in which the defender tries to minimize the maximal extra cost
caused by his lack of knowledge about the time of the initial infection.

Any backup scheme can be viewed as a very simple pebbling game where in each
step any one of the k backup pebbles can be moved to any point to the right
of all the pebbles along the time axis, and the goal of the game is to keep the
pebbles as evenly spread as possible at all times. However, its optimal solution is
surprisingly complicated and leads to interesting combinatorial questions which are
reminiscent of questions in discrepancy theory. For small values of k, we find prov-
ably optimal backup strategies for all k < 10, and each case seems to be some-
what different: For k = 3 the best schedule uses backup times which form a simple
geometric progression based on the golden ratio, but already for k = 4 we show
that no geometric progression can be optimal and the efficiency of the best online
scheme is worse than the efficiency of the best offline scheme by a strange factor of
2/ (1 + cos (2π/7)). For k = 8 the optimal order of device updates becomes highly
complicated: 1, 2, 4, 7, 5, 3, 1, 7, 5, 3, 7, 1, 4, 2, 4, 5 . . ., while for k = 9 it is much simpler.
We then consider the case of arbitrarily large values of k, and prove a matching upper
and lower bound of ln 4 on the asymptotic efficiency of optimal backup schemes when
k goes to infinity.

1 Introduction and Notation

A crucial element in the maintenance of any computer system is to keep up-to-
date backups of all the files stored in the system. Standard backup schemes are
designed to provide fast recovery in case there is a natural disaster (disk crash,
fire, earthquake, etc.), and there is vast literature about how to do it. However,
most of these publications consists of either descriptions of particular commercial
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systems (such as [2,4,9]) or general advice by government organizations such as
NIST (e.g., [11,12]), whose bottom line is that one should continuously update in
parallel several backup disks which are located at different physical locations. In this
paper we show that the design of backup strategies against malicious adversaries
requires a completely different approach, which had not been previously considered
by the academic research community. The main difference is that sophisticated cyber
attackers usually try to destroy (or corrupt in a way which is not immediately
detectable) all the backup copies of data files made over many months or even years
before launching the actual attack (victims in such cases usually go out of business,
as happened in [5]). Similarly, perpetrators of advanced ransomware attacks typically
wait several weeks before displaying their financial demands, in order to have a
chance to encrypt all the data files on any external storage device which may be
intermittently connected to the PC to backup its data (see [7]). Note that in such
cases it is dangerous to keep a backup system permanently connected to the main
system, it does not help to update multiple backup devices in parallel, and one
should not cycle too quickly through all the available backup devices (e.g., by using
seven disk-on-keys and connecting a different one to the PC each day of the week).

In this paper, we introduce the first mathematical formalization of this important
problem which makes it amenable to rigorous combinatorial analysis. We assume
that the system administrator has k storage devices. His backup scheme consists
of an infinite sequence of update actions (dn, tn), where in the n-th action he up-
dates device dn at time tn for a monotonically increasing and unbounded sequence
of update times. For the sake of simplicity, we assume that at time zero the file
system was empty, and that each update action instantaneously replaces the previ-
ous contents of the device with the full current state of the file system. In addition,
we assume that backup devices never fail, unless they are connected to an already
infected system (which corrupts all their data). At any time, we define the snapshot
of the scheme as the sequence of times S = (T1, T2, . . . , Tk) at which each device
was last updated, and add a superscript n when we want to refer to the snapshot
after update action number n. Since we can always rename the backup devices, we
simplify our notation by referring to the device that currently contains the i-th old-
est data as device number i, and thus the k numbers in the snapshot are always
sorted. Note that in this notation, updating the sequence of devices 1, 1, 1, . . . always
updates the device which currently holds the oldest data (and thus we cyclically go
through all the physical storage devices in a round-robin way), whereas updating
the sequence of devices k, k, k, . . . always updates the device which holds the newest
data (and thus only a single physical storage device gets repeatedly updated).

When a natural disaster such as a disk crash strikes, it happens at a random
time T , and its existence becomes immediately known. The system administrator
solves the problem by using the latest available backup, and the recovery cost is
typically proportional to T − Tk (which corresponds to how out-of-date it is). Our
model is different since it is based on two different time points: a secret time T ′
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t
0 T1 T2 T3 Tk

×
T ′ T ′′

Unavoidable cost
Actual cost

Fig. 1. Unavoidable cost vs. actual cost.

Old: t
0 T1 T2 T3 Tk T

New: t
0 T1 T2 Tk−1 Tk

Fig. 2. Transition from old to new snapshot for the update action (2, T ).

in which the initial infection happens, and a public time T ′′ in which the files on
the main system are destroyed. We assume that after the attack happens at T ′′, a
forensic investigation will make T ′ known to the defender, and thus he will know
which backup device contains the freshest reliable data: this will be the largest Ti
which is smaller than T ′ in the current snapshot at time T ′′ (if no such backup is
available, the defender can always go back to the empty file system at time zero).
The total cost of the recovery will then be proportional to T ′′ − Ti. However, it is
important to note that a cost of T ′′−T ′ is unavoidable even when the defender uses
the best conceivable backup scheme in which he makes a full backup just before T ′.
The additional cost which can be attributed to his lack of knowledge about T ′ is thus
proportional only to T ′−Ti (see Fig. 1). This casts the problem as a special type of
an online/offline optimization problem, in which we want to analyze the maximum
extra cost (in an additive rather than multiplicative sense) that can be inflicted on an
online defender who does not know the infection time T ′ compared to a hypothetical
offline defender who knows it and can schedule his backups accordingly. It is easy
to see that for any possible attack time T ′′, the maximum value of T ′ − Ti will
be achieved when the infection time T ′ happens just before the end of the longest
interval (Ti, Ti+1) in the current snapshot S at time T ′′, since this would make the
backup created at time Ti+1 unusable, and will force an online defender to use the
maximally out-of-date backup created at time Ti as the best available data. The best
strategy of the defender is thus to make this longest interval as short as possible at
all times.

The main difficulty for the defender is that as time progresses, he cannot nudge
each backup device from its old time to a slightly later time in order to keep them
evenly spread out — he can only replace an old backup by the current state of
the file system. The effect that an update action (d, t) has on the current snapshot
T1, T2, . . . , Tk is described in Figure 2: The update eliminates the d-th oldest backup

3



point from the snapshot, and combines the two intervals (Td−1, Td) and (Td, Td+1)
into a single interval (Td−1, Td+1) whose length is the sum of the two previous lengths.
In addition, it renames all the later devices in the snapshot by subtracting 1 from
their indices. Finally, it adds a new interval which extends from the last previous
update time Tk to the new update time T . This is a particularly simple pebbling
game, in which we repeatedly push backup pebbles to the right along the one di-
mensional time axis. It is reminiscent of the way we create new Fibonacci numbers
by adding together the last two numbers in the sequence, but in our case we have
k interval sizes in the current snapshot and can choose which pair of consecutive
numbers we would like to replace by their sum (while adding at the end an arbitrary
new number to keep the number of numbers fixed at k). The goal of the defender
is to use his allowed actions in order to keep all the backup times as evenly spread
as possible between zero and T as T goes to infinity. The shortest possible length of
the longest interval in a snapshot is T/k (which is created by placing the k backups
in an arithmetic progression of times ending at T ), and we say that interval i is
c-compliant if Ti − Ti−1 ≤ cT/k (where we assume that T0 = 0 for simplicity). A
backup scheme is c-efficient if all the interval lengths at all times T are bounded by
cT/k. Note that making c as small as possible requires careful compromises since
if the current snapshot is too uniform (e.g., when all its intervals have exactly the
same length), then the next snapshot will necessarily be far from uniform by having
some interval which is twice as long as the other intervals. A better strategy will
thus be to have some variety in the interval lengths, so that it will always be possible
to combine two relatively short consecutive intervals whose total length will not be
too long. For any k, we denote by ck the smallest possible value of c among all the
possible backup schemes which use k storage devices. The smallest possible value of
ck is clearly at least 1, and can be easily shown to be at most 2 by using the simple
strategy of starting from one arithmetic progression whose step is δ, and changing
it into another arithmetic progression whose step is 2δ by updating every second
backup device. However, finding the best update strategy for each k is an interesting
combinatorial problem whose solution is surprisingly complicated and which may
be of independent interest.

Our paper is thus a combination of elements from many different disciplines:
The original motivation of the problem comes from cryptography, its formalization
can be viewed as an online/offline optimization problem,1 its methodology can be
viewed as a pebbling game,2 and its goal is reminiscent of discrepancy theory.3

The paper is structured as follows: In Section 2 we describe some basic properties
of c-efficient schemes, and use them in Section 3 to find provably optimal backup
schemes for all values of k smaller than 10. In Section 4 we describe a recursive

1 Originally defined by Karp in [6] and extensively studied in [3].
2 See [10] for a comprehensive survey of applications of pebbling games in complexity theory and [1]

for another interesting application in cryptography.
3 This theory tries to characterize the unavoidable deviations from a uniform distribution, as

described in [8].
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construction of backup schemes whose efficiencies ck converge to ln 4 ≈ 1.3863 as
k goes to infinity, and in Section 5 we prove the optimality of our construction by
proving a matching lower bound on the asymptotic efficiencies of all the possible
backup schemes. Section 6 concludes the paper and poses some open problems.

2 Basic Observations

The following two observations tell us where exactly we should put our focus when
designing an efficient backup scheme. The first one deals with compliance of interval
k + 1:

Property 1. If two consecutive update actions in a k-backup scheme occur at times
tn and tn+1 and tn+1 > tn/ (1− c/k) then, for any snapshot taken between time
tn · k/ (k − c) and tn+1, interval k + 1 cannot be c-compliant.

Proof. Let S = (T1, . . . , Tk−1, Tk) be the snapshot at such a time T . We have Tk = tn
while T > tn/ (1− c/k). Thus T −Tk > cT/k, i.e., interval k+ 1 is not c-compliant.
�

This observation tells us that the sequence (tn)∞n=1 of update times in a c-efficient
scheme must satisfy tn+1 ≤ tn/ (1− c/k) for all n ≥ 1, giving rise to the following
definition.

Definition 1. Fix q > 1. A k-backup scheme is called q-subgeometric if the sequence
(tn)∞n=1 of update times satisfies tn+1 ≤ tn · q for all n ≥ 1. In case of equality the
scheme is called q-geometric.

Remark 1. We may scale the update times sequence by any positive constant, as
compliance and thus efficiency are homogenous conditions.

The second observation tells us what is necessary to render a scheme efficient,
besides being subgeometric.

Property 2. To check if a 1/ (1− c/k)-subgeometric k-backup scheme is c-efficient, it
suffices to verify c-compliance only for intervals in the initial snapshot and intervals
in standard snapshots — those taken immediately after an update action. Moreover,
it suffices to only check the compliance of interval d in a standard snapshot taken
immediately after updating device d.

Proof. Let S = (T1, . . . , Tk−1, Tk) be a snapshot taken at time T and let (d, Tk) be
the most recent update action. By subgeometry interval k + 1 is c-compliant. For
j = 1, . . . , k, the snapshot did not change between time Tk (immediately after the
update) to time T , so if interval j was c-compliant at time Tk it remains c-compliant
at time T ≥ Tk as well. Furthermore, all intervals in S were present in the previous
snapshot S′ besides d and k, and the latter is c-compliant since it has the same
length as interval k + 1 in S′ when considered just before the update. �

Henceforth we only deal with the initial snapshot S0 and the standard snapshots
Sn taken at time tn for n ≥ 1. In particular, there is no need to consider interval
k + 1.
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Next we make two observations about updated devices, which are useful in both
upper and lower bounds.

Property 3. Without loss of generality, a k-backup scheme never updates the newest
device, i.e., max (dn)∞n=1 ≤ k − 1.

Proof. Fix a c-efficient scheme and consider a snapshot Sn = (T1, . . . , Tk−1, Tk)
followed by update action (k, T ′k), so Sn+1 = (T1, . . . , Tk−1, T

′
k). If interval k is c-

compliant in Sn+1 then for any Tk ≤ T ≤ T ′k we have Tk−1 ≥ T ′k (1− c/k) ≥
T (1− c/k), i.e., T − Tk−1 ≤ cT/k. Hence we can simply skip the update action
(k, T ′k) altogether and the scheme remains c-efficient. �

Property 4. Without loss of generality, a k-backup scheme updates the oldest device
infinitely often, i.e., lim inf

n→∞
dn = 1.

Proof. Fix a c-efficient scheme and consider its standard snapshots Sn = (Tn1 , . . . , T
n
k )

for n ≥ 1. For notational convenience let ∆n
j = Tnj −Tnj−1 for n ≥ 1 and j = 1, . . . , k.

The update times sequence (tn)∞n=1 is unbounded and tn = Tnk =
∑k

j=1∆
n
j , so there

must exist some minimal J < k for which the sequence (∆n
J)∞n=1 is unbounded. If

J = 1 we are done; otherwise we show how to modify the scheme, while maintaining
c-efficiency, such that

(
∆n
J−1
)∞
n=1

is unbounded as well.

Let M = supn∆
n
J−1 and pick N such that ∆N

J > M . No further update action
(dn, tn) can update a device dn < J since that would result in ∆n

J−1 > M . In
particular, we have ∆n

J > M for all n ≥M . Pick n > N such device J is updated at
time tn and ∆n−1

J+1 > M . It is possible since
(
∆n
J+1

)∞
n=M

is unbounded and cannot
decrease unless device J is updated. We modify the scheme to update device J − 1
instead of J at time tn. Instead of creating a c-compliant interval of length

∆n
J = ∆n−1

J +∆n−1
J+1 > ∆n−1

J +M,

this update action now creates an interval of length

∆n
J−1 = ∆n−1

J−1 +∆n−1
J ≤ ∆n−1

J +M,

which is still c-compliant. The scheme remains c-efficient since future updates only
touch intervals j ≥ J and ∆n

J did not grow. This process can be repeated as long as
supn∆

n
J−1 remains finite. Note that in the limiting scheme device J − 1 is updated

infinitely often so supn∆
n
J−1 cannot be finite; thus

(
∆n
J−1
)∞
n=1

must be unbounded.
�

Remark 2. An important consequence of Property 4 is that we can essentially ignore
compliance of the initial snapshot by rebasing, i.e., running the scheme until all
backups present in the initial snapshot are updated at least once and treating the
then-current snapshot as the new starting snapshot S0. Note that the new S0 consists
only of members of the original update times sequence (tn)∞n=1.

6



Recall that the sequence of update times in an efficient scheme is subgeometric;
the next observation tells us that we can assume it actually grows exponentially
fast.

Property 5. Without loss of generality, the sequence (tn)∞n=1 of update times in a
c-efficient k-backup scheme satisfies tn+2 > tn · q, where q = 1/ (1− c/k).

Proof. Starting with a c-efficient scheme, we consider device updates in their natural
order and modify the scheme, while maintaining efficiency, such that the property
holds. At each step, the only modifications we make are to skip or delay an update,
which ensures that (tn)∞n=1 is still unbounded. The basic simple idea in all modifi-
cations is that if an update that merges two intervals is possible at some time T ,
i.e., the newly created interval is c-compliant, then an update that merges the same
intervals is also possible at any time T ′ > T .

If the property does not hold, consider the smallest n for which tn+2 ≤ tn · q. We
show we can either skip one of the update at times tn+1, tn+2 or delay the update at
time tn+2 until time tn+1 ·q > tn ·q. For i = 1, 2, denote by xi the next time at which
the device at tn+i is updated, and by `i the label of the actual device updated.4 Note
that `1 6= `2 by Property 3, and that the order of x1 and x2 is undetermined.

If x1 < x2 (the device `2 at tn+2 is in place by the time the device `1 at tn+1

is updated), then eliminate the device update at tn+1 (keeping the sequence q-
subgeometric as tn+2 ≤ tn · q) and switch roles between the two devices throughout
the rest of the scheme. Namely, update `2 from its previous update (before being
updated at tn+2) directly at time x1,

5 and update `1 from its previous update directly
at time tn+2 (and then again at x2 and so forth).

Otherwise, x2 < x1; consider the time period (tn+1, tn+1 ·q] and denote by `3 the
device that is removed from it at the latest time before x1 (note that there is at least
one such device, namely `2, hence it may be that `3 = `2). Delay the update of `3 to
time tn+1 · q and skip all other updates in (tn+1, tn+1 · q] that are removed from this
time period before x1. In other words, for each device (except `3) updated in the
time period (tn+1, tn+1 ·q] and updated again in the time period (tn+1 ·q, x1), update
it directly from its previous update (before tn+1) to its next one (after tn+1 · q). �

An immediate corollary of Property 5 is that tn+i > tn · qbi/2c for i ≥ 0; in
particular, tn+i > tn · q2 for i ≥ 4. Our last observation says when we can get
tn+3 > tn · q2.
Property 6. Let S = (T1, . . . , Tk) be a snapshot of a c-efficient k-backup scheme
such that Tj = tn and Tj+1 = tn+3 for some j = 1, . . . , k − 1. Thus without loss of
generality tn+3 > tn · q2, where q = 1/ (1− c/k).

Proof. Starting with a c-efficient scheme that satisfies Property 5, we modify it such
that Property 6 holds as well. As in the previous proof, for i = 1, 2, denote by `i the

4 In contrast to a temporary index of the device in the device sequence at some snapshot S, a
label of a device is fixed.

5 If device `2 was firstly used at tn+2, then simply use `2 first at x1 in the modified scheme.
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label of the device at tn+i and denote by xi the time by which it is removed from
the time period (tn, tn+3).

We show that if tn+3 ≤ tn · q2 then we can delay the update at time tn+1 until
tn · q and eliminate the update at time tn+2. Note that tn+1 ≤ tn · q < tn+2 by
Properties 1 and 5, hence after this change Property 5 continues to hold.

If x1 < x2 we switch the roles of the two devices by updating `2 directly at x1
and `1 at tn · q and again at x2; otherwise, x2 < x1 and we simply delay the update
of `1 to time tn · q and skip the update at tn+2 by updating `2 directly at x2 from
its previous update. �

3 Optimal Backup Schemes for Small Values of k

3.1 Round-robin and k = 2, 3

We now analyze the efficiency of the round-robin (RR) scheme, which always updates
device 1 (the oldest). Besides serving as a first example, round-robin is optimal for
k ≤ 3 and will make an appearance within the asymptotically optimal construction
of Section 4.

Proposition 1. Round-robin is c-efficient if and only if c ≥ kr, where r is the
smallest root of r = (1− r)k−1.

Proof. Denote by (tn)∞n=1 the sequence of update times. Every standard snapshot in
RR after the first k−1 takes the form Sn+k = (tn+1, tn+2, . . . , tn+k). If the scheme is
1/ (1− c/k)-subgeometric then tn+k ≤ tn+1 (1− c/k)1−k; on the other hand, interval
1 is c-compliant when tn+1 ≤ ctn+k/k. By Property 2 the whole scheme is c-efficient
if c satisfies (1− c/k)k−1 ≤ c/k, thus c ≥ kr and the minimal c is obtained by taking
a 1/ (1− r)-geometric update times sequence.

Note also that a q-geometric update times sequence yields an RR variant whose
efficiency is k · max

{
1− 1/q, q1−k

}
for any q > 1; indeed this is minimized by

q = 1/ (1− r). �

Remark 3. Round-robin is pretty bad for large k; indeed, its asymptotic efficiency
kr ≈ ln k − ln ln k is inferior to the simple bound ck ≤ 2 from the introduction.

The case k = 2 is made obvious by Property 3, since without loss of generality
RR is the only scheme to consider. Thus c2 = 1.

Proposition 2. For k = 3 we have c3 = 3r3 ≈ 1.1459, where r3 = 3−
√
5

2 ≈ 0.38197
is the smaller root of x2 − 3x+ 1 = 0.

Proof. For the upper bound, RR is 3r3-efficient. Note that 1/ (1− r3) = 1+
√
5

2 is the
golden ratio. For the lower bound, consider a 3r-efficient 3-backup scheme and let
Sn = (x, y, z) be a snapshot. By subgeometry z ≤ y/ (1− r) ≤ x/ (1− r)2 and by
compliance of interval 1, x ≤ rz. Together we have (1− r)2 ≤ r, i.e., r2−3r+1 ≤ 0.
Thus r ≥ r3. �
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3.2 Periodic schemes and k = 4, 5

Round-robin is no longer optimal for k > 3; nevertheless, the constructions we
shortly present for k = 4, 5 still have a periodic structure, which is captured by the
following definitions.

Definition 2. A device sequence (dn)∞n=1 is called m-periodic for an integer m ≥ 1
if dn+m = dn for all n ≥ 1. We denote it by writing the m-tuple D = (d1, . . . , dm).

Typically we consider m ≥ 2 as RR is the only 1-periodic device sequence satis-
fying Property 4.

Definition 3. An update times sequence (tn)∞n=1 is called (q,m)-periodic for q > 1
and an integer m ≥ 1 if tn+m = qm · tn for all n ≥ 1. We denote it by writing the
m-tuple P = (t1, . . . , tm).

Note that for m = 1, saying that an update times sequence is (q, 1)-periodic is
equivalent to saying it is q-geometric; for m ≥ 2 it is possible that a (q,m)-periodic
sequence is not q-subgeometric, but only q′-subgeometric for some q′ > q.

Definition 4. A k-backup scheme is called (q,m)-periodic if it consists of an m-
periodic device sequence D, a (q,m)-periodic update times sequence P , and its stan-
dard snapshot Sm after one full period is a scaling of its initial snapshot S0 by a
factor of qm.

To fully describe an (q,m)-periodic k-backup scheme, we need to provide q, D, P
and the initial snapshot S0. For convenience we sometimes normalize the last entry
of S0 to 1.

Remark 4. In fact, all constructions presented in this paper are periodic schemes;
they are optimal for small k or asymptotically.

We continue with k = 5. Note that when applying Property 2 to a periodic
scheme, it suffices to verify compliance within a single period.

Proposition 3. For k = 5 we have c5 = 5r5 ≈ 1.2256, where r5 ≈ 0.24512 is the
(only) real root of x3 − 4x2 + 5x− 1 = 0.

Proof. For the upper bound, set q = 1/ (1− r5) and consider the (q, 2)-periodic
scheme with S0 =

(
1, q2, q3, q4, q5

)
, D = (3, 1), and P =

(
q6, q7

)
. The scheme is

indeed (q, 2)-periodic, as S1 =
(
1, q2, q4, q5, q6

)
and S2 =

(
q2, q4, q5, q6, q7

)
= q2S0.

It is q-geometric so we just need to verify compliance of interval 3 in S1: q
4−q2 ≤ r5q6

and interval 1 in S2: q
2 ≤ r5q7. Altogether it remains to show

r5 ≥ max
{
q−5, q−2 − q−4

}
= max

{
(1− r5)5 , (1− r5)2 − (1− r5)4

}
,

both of which are equal to r5.
For the lower bound, consider a 5r-efficient 5-backup scheme. It cannot be RR,

which satisfies (1− r)4 ≤ r and in particular r > 0.275 > r5. We thus pick a
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snapshot Sn = (x, y, z, u, v) followed by the update steps (1, w) and (d, t) for some
d ∈ {2, 3, 4}. Thus Sn+2 is one of (y, u, v, w, t), (y, z, v, w, t), or (y, z, u, w, t). In either
case, compliance of Sn, Sn+1 and Sn+2 implies v ≤ r (v + w + t), which together with

v ≤ (1− r)w ≤ (1− r)2 t yields
(

(1− r)2 − r
)

(1− r) ≤ r, i.e., r3−4r2+5r−1 ≥ 0.

Thus r ≥ r5. �
For k = 2, 3, 5 the upper bound was a geometric scheme, but for k = 4 the

optimal sequence is a periodic, yet non-geometric scheme.

Proposition 4. For k = 4 we have c4 = 4r4 ≈ 1.2319, where r4 = (2 + 2 cos (2π/7))−1 ≈
0.307979 is the smallest root of x3 − 5x2 + 6x− 1 = 0. Moreover, any geometric 4-
backup c-efficient scheme must have c ≥ 4r̃4 ≈ 1.2707, where r̃4 ≈ 0.31767 > r4 is
the real root of x3 − 3x2 + 4x− 1 = 0.

Proof. For the upper bound, set q =
√
α where α = 1/

√
r4 is the largest root of x3−

x2−2x+1 = 0 and consider the (q, 2)-periodic scheme with S0 =
(
1, α, α3 − α2, α2

)
,

D = (3, 1), and P =
(
α4 − α3, α3

)
. The scheme is indeed (q, 2)-periodic, as S1 =(

1, α, α2, α4 − α3
)

and S2 =
(
α, α2, α4 − α3, α3

)
= αS0 = q2S0. The update times

sequence P is 1/ (1− r4)-subgeometric if (1− r4)α3 ≤ α4−α3 and (1− r4)
(
α3 − α2

)
≤

α2; furthermore we need to verify compliance of interval 3 in S1: α
2−α ≤ r4

(
α4 − α3

)
and interval 1 in S2: α ≤ r4α3. Altogether it remains to show

r4 ≥ max

{
2− α, 1− 1

α2 − α,
α2 − α
α4 − α3

, α−2
}
.

Indeed the last three are equal to r4 while the first is

2− α = α−1
(

1− (α− 1)2
)
< α−1

(
1− (α− 1)α−1

)
= α−2 = r4,

using α− 1 > α−1 since r4 +
√
r4 < r3 +

√
r3 = 1.

For the lower bound, consider a 4r-efficient 4-backup scheme. If it is RR, it
satisfies (1− r)3 ≤ r so r ≥ r̃4. Otherwise pick a snapshot Sn = (x, y, z, u) followed
by update steps (1, v) and (d,w) for some d ∈ {2, 3}. The snapshot Sn+2 is (y, u, v, w)
or (y, z, v, w). The snapshot Sn+3 after the next update step (d′, t) can be one of
four:

– If Sn+3 = (z, v, w, t) then v = (v − z) + z ≤ r (w + t) by compliance of Sn+2 =
(y, z, v, w) and Sn+3, yielding (1− r)3 ≤ r2, i.e., r > 0.43016 > r̃4 > r4;

– If Sn+3 is (y, v, w, t) or (u, v, w, t) then v = y+ (v − y) ≤ r (v + t) by compliance
of Sn+1 and Sn+3 or u ≤ rt by compliance of Sn+3; either way yields (1− r)3 ≤ r,
which again implies r ≥ r̃4;

– The only remaining option is Sn+3 = (y, u, w, t), which means Sn+2 = (y, u, v, w).
Now

(1− r) v ≤ u = y + (u− y) ≤ r (v + w)

w = y + (u− y) + (w − u) ≤ r (v + w + t)
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by compliance of all four snapshots, so

(1− 2r) v ≤ rw
(1− r)2w ≤ (1− r) r (v + t) ≤ (1− r) rv + rw

hence (1− 2r)
(

(1− r)2 − r
)
≤ r2 (1− r), i.e., r3 − 6r2 + 5r − 1 ≥ 0, which

implies r ≥ r4.

Note that a 1/ (1− r)-geometric update times sequence would satisfy (1− r)w = v
in the last case, yielding (1− r)3 ≤ r one last time and implying r ≥ r̃4. �

3.3 Casting the problem as a linear program

Fix c ≥ 1 and a device sequence (dn)∞n=1. Can we choose an initial snapshot S0 =(
T 0
1 , . . . , T

0
k

)
and a sequence (tn)∞n=1 of update times such that the resulting k-

backup scheme is c-efficient?

Any standard snapshot Sn consists of a particular subset of the variables
{
T 0
j

}k
j=1

and {tn}∞n=1, and using (dn)∞n=1 we can determine exactly which. Furthermore, mono-
tonicity and 1/ (1− c/k)-subgeometry of update times, and c-compliance of the
snapshots are all expressed as linear inequalities. This gives rise to an infinite linear
program L = L (c; (dn)∞n=1), which is feasible whenever a c-efficient scheme with the
prescribed device sequence exists. Note that all constraints are homogenous, so to
avoid the zero solution we add a non-homogenous condition, e.g., T 0

k = 1.

In addition, we are not interested in solutions where (tn)∞n=1 is bounded. This can
happen, for instance, when dn = k − 1 for all n ≥ 1.6 Luckily, using Property 5 we
can restrict our attention to backup schemes with exponentially increasing update
times, so we add to L the linear inequalities therein. Now L is feasible if and only if
a c-efficient scheme with the prescribed device sequence exists; in other words, ck is
the infimum over c ≥ 1 for which there exists a device sequence (dn)∞n=1 such that
L (c; (dn)∞n=1) is feasible.

As an infinite program, L is not too convenient to work with. We can thus limit
our attention to subprograms LN for some finite N , which only involve the variables{
T 0
j

}k
j=1

and {tn}Nn=1 and the relevant constraints. By itself, LN can no longer ensure
the existence of a c-efficient scheme, but can be used to prove lower bounds on ck
in the following way. Write Σ = {1, . . . , k − 1}.

Definition 5. A finite sequence D ∈ Σ∗ is called a c-witness if L|D| (c;D) is infea-
sible.

Definition 6. A set D ⊂ Σ∗ of finite sequences is called blocking if any infinite
sequence (dn)∞n=1 over Σ has some prefix in D.

6 This may not seem a valid scheme to consider, given Property 4; however, we might have to
consider an arbitrarily long prefix of the device sequence without device 1 when solving a finite
subprogram.
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k c̃ q̃ (1− c̃/k)−k/2 D m Geometric? Optimal?

2 1 2 2 (1) 1 Yes Yes, RR

3 1.145898 1.618093 2.058171 (1) 1 Yes Yes, |D| = 1

4 1.231914 1.342363 2.088146 (1, 3) 2 No Yes, |D| = 3

5 1.225612 1.324718 2.019801 (1, 3) 2 Yes Yes, |D| = 5

6 1.296634 1.239553 2.076001 (1, 2, 3, 1, 3, 5) 6 No Yes, |D| = 601

7 1.310296 1.208296 2.06552 (1, 3, 4, 1, 5, 3) 6 No Yes, |D| = 3005

8 1.320138 1.159761 2.057263 (1, 2, 4, 7, 5, 3, 1, 7, 5, 3, 7, 1, 4, 2, 4, 5) 16 No Yes, |D| = 51691

9 1.325768 1.15984 2.048492 (1, 5, 3, 5, 1, 5, 6, 3) 8 No Yes, |D| = 911662

10 1.334405 1.132085 2.046483 (1, 5, 3, 5, 1, 5, 6, 3, 1, 5, 9, 3, 5, 9) 14 No ?

11 1.342994 1.123932 2.046568 (1, 3, 5, 6, 1, 6, 2, 10, 6, 3, 6, 1, 6, 2, 6, 3, 9, 6) 18 No ?

12 1.354008 1.121687 2.051024 (1, 2, 3, 5, 6, 7, 1, 2, 6, 3, 6, 7, 1, 2, 6, 3, 6, 9, 7) 19 No ?

13 1.355001 1.114038 2.045151 (1, 3, 6, 7, 4, 7, 1, 7, 8, 3) 10 No ?

14 1.360472 1.097269 2.045409

 1, 4, 2, 6, 7, 4, 7, 8, 1, 8, 2, 3, 7, 12, 4,
7, 8, 1, 4, 7, 2, 7, 8, 4, 13, 8, 1, 8, 4, 2,
7, 4, 7, 8, 1, 8, 4, 2, 7, 12, 4, 7, 13, 8

 44 No ?

Table 1. Computationally-verified upper bounds on ck for 2 ≤ k ≤ 14.

Proposition 5. If there exists a blocking set of c-witnesses for some c ≥ 1, then
ck > c.

We now describe a strategy to approximate ck to arbitrary precision. The lower
bound of Proposition 5 does not assume any periodicity of the backup scheme.
For the upper bound, however, we limit our focus to periodic constructions. For a
finite sequence D ∈ Σ∗ of length m, we can augment Lm (c;D) with the periodicity
equality constraint Sm = qm · S0; call the resulting program L∗ (c, q;D). This is
a finite linear program, which we can computationally solve given c, q, and D.
Although q ≤ 1/ (1− c/k) is not known to us, we can first compute an approximation
q̃ of q by solving L10m

(
c;D10

)
, and then solve L∗ (c, q̃;D). Using binary search, we

can compute a numerical approximation c̃ of the minimal c for which L∗ (c, q̃;D)
is feasible. Lastly, we can enumerate short sequences D ∈ Σ∗ in a BFS/DFS-esque
manner and take the best c̃ obtained.

The results in Table 1 were obtained by a Python program that follows this strat-
egy. The ‘Optimal’ column specifies whether a blocking set D of (c− ε)-witnesses

was obtained for ε = 10−5. The ‘(1− c̃/k)−k/2’ column shows how tight is the lower
bound of Corollary 2.

At first it seems that Proposition 5 cannot be used to pinpoint ck exactly, since
any finite blocking set D of (ck − ε)-witnesses for some ε > 0 leaves an interval of
uncertainty of length ε. The following proposition eliminates this uncertainly.

Proposition 6. For every finite sequence D ∈ Σ∗ there is finite set CD ⊂ R such
that the feasibility of L|D| (c;D), for some c ≥ 1, only depends on the relative order
between c and members of CD. In particular, there exists some ε > 0 such that if D is
a (c− ε)-witness but not a c-witness then D is also a c′-witness for all c−ε < c′ < c.

Proof. Fix D ∈ Σ∗. Treating c as a parameter, note that the subprogram L|D| (c;D)
is feasible if and only if the polytope PD (c) defined by L|D| (c;D) is nonempty.
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Decreasing c shrinks PD (c) until some critical cD for which PD (cD) is reduced to a
single vertex, at which a subset of the linear constraints are satisfied with equality.
Hence cD is a solution of some polynomial equation determined by the relevant
constraints. The set of constraints is finite, thus there are finitely many polynomial
equations that can define cD, and we can take CD as the set of all their roots. Now
take ε to be smaller than the distance between any two distinct elements of CD. �

Remark 5. Note that when ε is small enough, we can actually retrieve the polynomial
equations defining c and q from the polytope PD (c̃, q̃); using this method we get an
algebraic representation of ck rather than a rational approximation.

4 Asymptotically Optimal Upper Bounds

In this section we describe a family of periodic geometric k-backup schemes. In
contrast to our experience from Table 1 — that optimal/best known schemes are
geometric only for k = 2, 3, 5 — this family is rich enough to include asymptotically
optimal, i.e., (1 + o (1)) ck-efficient, schemes.

4.1 A recursive geometric scheme

Fix a real number q > 1 and an integer t ≥ 0. We describe a k-backup scheme
B (q,K), where K is a (t+ 2)-subset {0, . . . , k} whose elements are

k = k0 > k1 > k2 > · · · > kt > kt+1 = 0.

B (q,K) is
(
q, 2t

)
-periodic and q-geometric, and its device update sequence D =

(dn)2
t

n=1 is defined as dn = 1 + kµ(n)+1, where µ (n) is the largest µ ≤ t for which 2µ

divides n. As per Remark 2, we can rely on rebasing and there is no need to define
the initial snapshot S0 explicitly.

Example 1. For K = {0, 3, 5, 9, 19} we get D = (10, 6, 10, 4, 10, 6, 10, 1).

Although B (q,K) was defined explicitly above, it can be viewed also as a recur-
sive scheme: the base case t = 0 is the round-robin k-backup scheme B (q, {0, k});
for t ≥ 1, B (q,K) alternates between updating the (k1 + 1)-st oldest backup and
between acting according to the inner k1-backup scheme B

(
q2,K \ {k1}

)
.

Let us elaborate a bit more on the recursive step. In every snapshot Sn =
(T1, . . . Tk) we have Tj = qn+j for k1 + 1 ≤ j ≤ k since we never update backups
younger than k1 + 1. In every odd snapshot Sn we have just updated the (k1 + 1)-st
oldest backup, so Tk1 = qn+k1−1 while Tk1+1 = qn+k1+1. This means that logq Tj
for j = 1, . . . , k1 all have the same parity as n + k1 − 1 in any snapshot Sn. We
thus treat S′ = (T1, . . . , Tk1) as a snapshot of a k1-backup scheme, which oper-
ates at half speed and never sees half of the backups. The inner backup scheme
can rightfully be called B

(
q2,K \ {k1}

)
, as the common ratio of the update times

sequence for the backups that do make it to the inner scheme is q2, and taking
only the even locations of D yields a 2t−1 periodic sequence (d′n)∞n=0 such that
d′n = d2n = 1 + kµ(2n)+1 = 1 + kµ(n)+2.
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4.2 Analyzing the recursive scheme

First we determine exactly how efficient B (q,K) can be for any q and K, and then
we work with a particular choice.

Denote by r (q,K) the maximum of

1− q−1; (1a)

max
{
q−e(`)

(
q2

` − q−2`
)}t−1

`=0
; and (1b)

q2
t−e(t), (1c)

where

e (`) =
∑̀
i=0

2i (ki − ki+1) for ` = 0, 1, . . . , t.

Theorem 1. Given q and K, the minimal c for which B (q,K) is c-efficient is
c = r (q,K) · k.

Proof. We proceed by induction on t. The base case t = 0 is the round-robin scheme,
which we already know to be k ·max

(
1− q−1, q1−k

)
-efficient.

For t ≥ 1, fix r̃ such that B (q,K∗) is r̃k-efficient and consider a critical interval,
i.e., an interval of length δ = r̃ ·Tk in some snapshot Sn = (T1, . . . , Tk). This interval
is either between Tk−1 and Tk, and then we get (1a), or an interval created by
merging two smaller intervals. We consider even and odd snapshots separately.

When n is odd, this interval is between Tk1 = qn+k1−1 and Tk1+1 = qn+k1+1, so(
q1 − q−1

)
qn+k1 = r̃ · Tk = r · qn+k;

this gives us case ` = 0 of (1b).
When n is even, this interval is among S′ = (T1, . . . , Tk1) so δ ≥ r′ · Tk1 , where

r′ = r (k1,K \ {k1}) and Tk1 = qn+k1 . By induction r′ is the maximum of

1−
(
q2
)−1

; (2)

max
{(
q2
)−e′(`) ((

q2
)2` − (q2)−2`)}t−2

`=0
; and (3)(

q2
)2t−1−e′(t−1)

, (4)

where

e′ (`) =
∑̀
i=0

2i (ki+1 − ki+2) =
1

2
(e (`+ 1)− k0 + k1) .

Substituting δ = r̃ · Tk = r · qn+k we get that

r̃ ≥ qk1−k ·
(
1− q−2

)
= q−e(0)

(
1− q−2

)
,
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which is a relaxation of case ` = 0 of 1b;

r̃ ≥ qk1−k · q−2e′(`)
(
q2

`+1 − q−2`+1
)

= q−e(`+1)
(
q2

`+1 − q−2`+1
)

for ` = 0, . . . , t− 2,

which covers the remaining cases of (1b); and

r̃ ≥ qk1−k · q2t−2e′(t−1) = q2
t−e(t),

which is simply (1c). Altogether we showed that r̃ ≥ r (q,K∗).
Repeating the argument when starting with a critical interval of the inner scheme

shows that B (q,K∗) is indeed r (q,K∗) · k-efficient. �
Given an integer k ≥ 2, let t = blog2 kc − 1. Define K∗ = {k0, . . . , kt+1} by

ki =
⌊
2−ik

⌋
for i = 0, . . . , t and kt+1 = 0. Note that k0 = k and that kt ∈ {2, 3}.

Theorem 2. For an appropriate choice of q, B (q,K∗) is (1 + o (1)) ln 4-efficient.

Proof. Write x = log2 k and ε = 3/x. Let γ = (1 + ε) ln 4
k and let q = eγ . Observe

that qk/2 = 21+ε for our choice of q. We use Theorem 1 to show that B (q,K∗) is
kγ-efficient when k is large enough. Clearly (1a) holds since

1− q−1 = 1− e−γ < γ;

It remains to verify (1b) and (1c), handled by Propositions 7 and 8 respectively. �

Proposition 7. For k ≥ 213 and γ, ε, x, q as above, q−e(`)
(
q2

` − q−2`
)
< γ for all

` = 0, . . . , t− 1.

Proposition 8. For k ≥ 5 and γ, ε, x, q as above, q2
t−e(t) < γ.

Before proving Propositions 8 and 7 we would like to simplify e (`) for our K∗.

Claim. For ` = 0, . . . , t we have e (`) > (`+ 1) k/2−2`; moreover, e (t) > (t+ 2) k/2−
2t.

Proof. We have

e (`) =
∑̀
i=0

2i (ki − ki+1) = k0 − 2`k`+1 +
∑̀
i=1

2i−1ki

= k − 2`
⌊
2−`−1k

⌋
+
∑̀
i=1

2i−1
⌊
2−ik

⌋
≥ k − k

2
+

1

2

∑̀
i=1

(
k − 2i−1

)
=
k

2
(`+ 1) + 1− 2`.

The slightly improved bound for ` = t is obtained by observing that 2tkt+1 = 0 in
the above calculation since kt+1 = 0. �
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Proof (of Proposition 8). By the claim above

e (t)− 2t > (t+ 2) k/2− 2t+1 ≥ xk/2− k

so

q2
t−e(t) ≤ qk−xk/2 =

41+ε

8k
≤ ln

(
41+ε

)
k

= γ,

where the last inequality is true since y ≤ 8 ln y for 2 ≤ y ≤ 26 and indeed for k ≥ 5
we have 0 < ε < 1.3 and 4 < 41+ε < 25. �
Proof (of Proposition 7). By the claim above

q−e(`)
(
q2

` − q−2`
)
< q2

`−(`+1)k/2
(
q2

` − q−2`
)

= 2−(1+ε)(`+1)
(
q2

`+1 − 1
)

= 2−(`+1) · 8−(`+1)/x
(
e2

`+1γ − 1
)

< 8−(`+1)/x γ

1− 2`+1γ
,

using ex − 1 < x/ (1− x) for all 0 < x ≤ 1. Thus, it remains to show that

8−(`+1)/x ≤ 1− 2`+1γ = 1− 2`+1−x (1 + ε) ln 4.

Let z = x− (`+ 1) and note that 1 ≤ z ≤ x− 1 as 0 ≤ ` ≤ t− 1. Define

f (x, z) = 1− 21−z
(

1 +
3

x

)
ln 2− 8z/x−1;

to conclude the proof we show that f (x, z) is positive for all 1 ≤ z ≤ x − 1 and
x ≥ 13.

First we compute some partial derivatives of f .

df (x, 1)

dx
=

3 ln 2

x2

(
1 + 81/x−1

)
;

df (x, x− 1)

dx
=

3 ln 2

x2

(
22−x − 8−1/x

)
+ 22−x

(
1 +

3

x

)
ln2 2;

∂f (x, z)

∂z
=

(
1 +

3

x

)
21−z ln2 2− 3 ln 2

x
8z/x−1;

∂2f (x, z)

(∂z)2
= −

(
1 +

3

x

)
21−z ln3 2−

(
3 ln 2

x

)2

8z/x−1.

Now df(x,1)
dx > 0 everywhere, so f (x, 1) is increasing and f (x, 1) ≥ f (13, 1) > 0 for

all x ≥ 13. Next df(x,x−1)
dx < 0 for x > 7, sof (x, x− 1) is decreasing and

f (x, x− 1) > lim
x→∞

f (x, x− 1) = lim
x→∞

1− 8−1/x = 0
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k t efficiency of B (q∗,K∗) q∗ is smallest root of (q∗)k/2 effective εx as % of τ

2 0 1 x− 2 2 < 0

4 1 1.527864045 x2 − x− 1 2.61803399 38.63%

8 2 1.446619893 x4 − x− 1 2.220744085 24.69%

16 3 1.414522345 x8 − x− 1 2.096981559 15.40%

32 4 1.399982156 x16 − x− 1 2.045751025 9.337%

64 5 1.393037798 x32 − x− 1 2.022250526 5.520%

128 6 1.389641669 x64 − x− 1 2.010975735 3.196%

256 7 1.389039657 x959 −
(
x128 − 1

)
/ (x− 1) 2.006538067 2.996%

512 8 1.38976776 x2175 −
(
x256 − 1

)
/ (x− 1) 2.005370202 4.265%

1024 9 1.389961428 x4863 −
(
x512 − 1

)
/ (x− 1) 2.004616597 5.003%

2048 10 1.389901672 x10751 −
(
x1024 − 1

)
/ (x− 1) 2.004083324 5.413%

4096 11 1.3897339 x23551 −
(
x2048 − 1

)
/ (x− 1) 2.003678733 5.631%

8192 12 1.389529892 x51199 −
(
x4096 − 1

)
/ (x− 1) 2.003356204 5.738%

16384 13 1.389323191 x110591 −
(
x8192 − 1

)
/ (x− 1) 2.003090123 5.785%

32768 14 1.389128152 x237567 −
(
xk/2 − 1

)
/ (x− 1) 2.002865287 5.799%

65536 15 1.388949844 x507903 −
(
xk/2 − 1

)
/ (x− 1) 2.002671985 5.796%

131072 16 1.388789052 x1081343 −
(
xk/2 − 1

)
/ (x− 1) 2.002503614 5.786%

262144 17 1.388644741 x2293759 −
(
xk/2 − 1

)
/ (x− 1) 2.002355444 5.772%

q∗ for t ≥ 7 is smallest root 6= 1 of xkt/2+k/4 − xkt/2+k/4−1 − xk/2 + 1.
Table 2. Performance of the recursive k-backup scheme for k = 2t+1.

for all x > 7. Lastly, f (x, z) is concave in z as ∂2f

(∂z)2
< 0 everywhere. Thus

min
1≤z≤x−1

f (x, z) = min {f (x, 1) , f (x, x− 1)} > 0

for all x ≥ 13. �

Remark 6. Theorem 2 chooses q suboptimally. Empirical evidence shows that, for
all k ≥ 2, the optimal q = q∗ for B (q,K∗) satisfies (1a) and one of (1b) and (1c).
In other words, it is the smallest root of either 1 − x−1 = x2

t−e(t) or 1 − x−1 =

x−e(`)
(
x2

` − x−2`
)

for some ` = 0, . . . , t− 1.

Remark 7. With additional effort the error term in Theorem 2 can be improved by
a factor of almost 6 to ε = τ/x, where τ = − log2 ln 2 ≈ 0.53. The major obstacle
is that cases ` = t − 2 and ` = t − 1 of (1b) need to be done separately since
the appropriate f (x, z) in Proposition 7 is negative for z < log2 (ln 4/ (1− ln 2)) ≈
2.1756. Choosing ε = τ ′/x for τ ′ < τ violates (1c) for large enough k = 2t+2 − 1.

Remark 8. We verified that B (q∗,K∗) is (1 + τ/x) ln 4-efficient for 2 ≤ k ≤ 213 as
well. See Tables 2 and 3 for the cases k = 2t+1 and k = 2t+2 − 1, respectively.

5 Asymptotically Optimal Lower Bounds

In this section we prove lower bounds on ck, focusing on asymptotic lower bounds
in which k grows to infinity.
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k t efficiency of B (q∗,K∗) q∗ is smallest root of (q∗)k/2 effective εx as % of τ

3 0 1.145898034 x2 − x− 1 2.058171027 < 0

7 1 1.318433761 x8 − x7 − 1 2.075892596 < 0

15 2 1.408092224 x24 − x23 − 1 2.09450451 11.62%

31 3 1.448810165 x64 − x63 − 1 2.099878619 42.25%

63 4 1.46399549 x160 − x159 − 1 2.097270918 63.36%

127 5 1.466865403 x384 − x383 − 1 2.091122952 76.82%

255 6 1.464278319 x896 − x895 − 1 2.083917032 85.05%

511 7 1.459602376 x2048 − x2047 − 1 2.076835761 89.98%

1023 8 1.454408143 x4608 − x4607 − 1 2.070357915 92.91%

2047 9 1.449377613 x10240 − x10239 − 1 2.064618545 94.66%

4095 10 1.444769023 x22528 − x22527 − 1 2.059600382 95.72%

8191 11 1.440647199 x49152 − x49151 − 1 2.055228333 96.39%

16383 12 1.436994729 x106496 − x106495 − 1 2.051413108 96.83%

32767 13 1.43376402 x229376 − x229375 − 1 2.048069607 97.14%

65535 14 1.430900622 x491520 − x491519 − 1 2.045123383 97.36%

131071 15 1.428352881 x1048576 − x1048575 − 1 2.042511814 97.54%

262143 16 1.426075306 x2228224 − x2228223 − 1 2.040183169 97.69%

q∗ is smallest root of x(t+1)(k+1)/2 − x(t+1)(k+1)/2−1 − 1.
Table 3. Performance of the recursive k-backup scheme for k = 2t+2 − 1.

We start by proving a simple asymptotic lower bound ck ≥ 2 − ln 2 − o (1),
and then improve it to ck ≥ (1− o (1)) ln 4, which is asymptotically optimal via the
matching upper bound of Section 4.

5.1 Stability and bounding expressions

Obtaining lower bounds requires viewing the problem from a different perspective.
It will sometimes be more convenient to refer to a certain physical device, without
considering its temporary index in the device sequence at some snapshot S (which
is variable and depends on S).

Given a k-backup scheme, we define a function BE (s) and use it to bound its
efficiency from below. The parameter s is related to the notion of stability, which
we now define.

Definition 7. Fix a k-backup scheme. A device updated at time T is called s-stable,
for some s = 1, . . . , k − 1, if at least s previous devices are updated before the next
time it is updated.

By Property 4 we can assume all devices get updated eventually; this means that
in a snapshot S = (T1, . . . , Tk), where Tk is a time by which all devices have been
updated from the initial snapshot, we have that the device updated at time Tk−s is
s-stable for s = 1, . . . , k − 1.

For convenience, the proofs in this section assume the update times sequence is
normalized by a constant. This is captured by the following definition.

Definition 8. A k-backup scheme is called s-normalized if an s-stable device is
updated at time R0 = 1.
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Given an s-normalized k-backup scheme, we define a sequence of times 1 = R0 <
R1 < · · · < Rs as follows: Ri for i ≥ 1 is the time at which the i-th device is removed
from (0, 1]. In other words, R1 is the time T > R0 at which some device is updated;
R2 is the time T > R1 at which we update the next device that was previously
updated in (0, 1] (but not at T > 1), and so forth. Note that the device updated at
time R0 is not updated at any time Ri for i = 1, . . . , s by the definition of stability.
Now we are ready to define BE (s).

Definition 9. The T -truncated bounding expression of an s-normalized k-backup
scheme is BET (s) =

∑s
i=1 Ui, where Ui = min {T,Ri}.

The bounding expression plays a crucial role in proving lower bounds, based on
Proposition 9 below. We note that the truncated bounding expression only depends
on the scheme’s behavior until time T , and hence the bounds that can be obtained
from it are not tight for k > 3. Nevertheless, the lower bound we obtain using BE2

in Corollary 2 is asymptotically optimal, since the gap between it and the upper
bound Theorem 2 tends to zero as k grows to infinity.

Remark 9. It is possible to analyze BET beyond T = 2 and obtain tight lower
bounds for larger values of k. However, there is no asymptotic improvement and the
analysis becomes increasingly more technical as k grows.

5.2 Asymptotic lower bound of 2 − ln 2 ≈ 1.3068

To simplify the analysis, we assume k is even. It can be extended to cover odd values
of k as well, but this gives no asymptotic improvement since ck+1 ≤ ck · k+1

k for all
k, so we only lose an error term of O (1/k), which is of the same order as the error
terms in Corollaries 1 and 2.

To simplify our notation we write b = c/k throughout this section.

Proposition 9. Any (k/2)-normalized bk-efficient k-backup scheme satisfies BE2(k/2) ≥
1/b.

Proof. At time R0 = 1, the time period (0, 1] contains k intervals of length ≤ b,
giving rise to the inequality b ·k ≥ 1. At time R1, a device is removed from (0, 1] and
it now contains one interval of length ≤ b ·R1 (two previous intervals, each of length
≤ b, were merged), and k − 2 intervals of length ≤ b, giving b · (k − 2 +R1) ≥ 1.

At time R2, an additional device is removed from the time period (0, 1], hence it
must contain an interval of length ≤ b ·R2 formed by merging two previous intervals.
We obtain b · (k−4 +R1 +R2) ≥ 1, since the remaining k−3 intervals must include
k−4 intervals of length ≤ b and one (additional) interval of length at most ≤ b ·R1.
Note that this claim holds regardless of which device is updated at R2, and it holds
in particular in case one of the intervals merged at time R2 contains the intervals
merged at R1 (in fact, this case gives the stronger inequality b · (k − 3 +R2) ≥ 1).

In general, for j = 1, 2, . . . , k/2, at time Rj the time period (0, 1] must contain j
distinct intervals of lengths ≤ b ·Ri for i = 1, 2, . . . , j, and k− 2j intervals of length
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≤ b. This gives the inequality

k − 2j +

j∑
i=1

Ri ≥ 1/b.

Let j ≤ k/2 be the largest index such that Rj ≤ 2, so Ui = Ri for all 1 ≤ i ≤ j and
Ui = 2 for all j < i ≤ k/2. Now at time Rj we have

1/b ≤ k − 2j +

j∑
i=1

Ri = (k/2− j) · 2 +

j∑
i=1

Ui =

k/2∑
i=j+1

Ui +

j∑
i=1

Ui = BE2(k/2).

�
Now we need an upper bound on the bounding expression. For the simpler lower

bound of 2− ln 2 we use the following proposition.

Proposition 10. Any (k/2)-normalized bk-efficient k-backup scheme has Ri ≤ 1/ (1− bi)
for i = 1, . . . , k/2.

Proof. At time T = 1/ (1− bi), all intervals are of length at most bT = b/ (1− bi).
Since T−R0 = 1/ (1− bi)−1 = bi/ (1− bi), for any ε > 0 the time period (R0, T+ε]
must consist of at least i + 1 intervals, implying that the i-th device was removed
from the time period (0, 1] by time T . �

Proposition 11. Let b < 1
2 . Any (k/2)-normalized bk-efficient k-backup scheme

satisfies

b ·BE2(k/2) ≤ ln 2 +
b

1− 2b
+ bk − 1.

Proof. For i ≤ b1/2bc, we have Ri ≤ 1/ (1− bb1/2bc) ≤ 2, but we cannot assure that
Ri ≤ 2 for i > b1/2bc. By Proposition 10,

b ·BE2 (k/2) ≤ b ·

b1/2bc∑
i=1

Ri +

k/2∑
i=b1/2bc+1

2

 ≤ b1/2bc∑
i=1

b

1− bi + bk − 1.

Now for b < 1
2 the sum on the right-hand side can be bounded by

b1/2bc∑
i=1

1

1/b− i ≤
1/2b∫
0

dx

1/b− x− 1
= ln

(
1

b
− 1

)
− ln

(
1

2b
− 1

)

= ln 2 + ln

(
1 +

b

1− 2b

)
≤ ln 2 +

b

1− 2b
,

establishing the proposition. �

Corollary 1. For all even k ≥ 4 we have ck ≥ 2− ln 2− o (1).
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Proof. Fix a (k/2)-normalized ck-efficient k-backup scheme, and write b = ck/k <
1
2 .

By Propositions 9 and 11 we have ck = bk ≥ 2 − ln 2 − 1/ (k/ck − 2) ≥ 2 − ln 2 −
1/ (k − 2) .

�

5.3 Improved asymptotic lower bound of ln 4 ≈ 1.3863

We now improve the asymptotic lower bound to ln 4. This result is a simple corol-
lary of the following lemma, which gives a tighter upper bound on the bounding
expression.

Lemma 1. For any s-normalized bk-efficient k-backup scheme such that 1 ≤ s ≤
k/2 and (1− b)−k/2 ≤ 2 we have b ·BE2(s) ≤ (1− b)−s − 1.

Proof. The proof is by induction on s. For the base case s = 1, one device is updated
at time at most 1/(1− b), giving b ·BE2(1) ≤ b/(1− b) = 1

1−b − 1.

Assume the hypothesis holds for all i ≤ s − 1 and our goal is to prove it for
i = s > 1. Without loss of generality we assume the scheme satisfies all properties
of Section 2. Consider a snapshot at time T = 2, and denote by R′ the update time
of the first device in the time period (R0, T ] = (1, 2] at the snapshot time T = 2.
We would like to apply the induction hypothesis from time R′, but this cannot
be done directly since it is not guaranteed that the device last updated at R′ in
the snapshot at time T = 2 is (s− 1)-stable (potentially, less than s devices are
removed from (0, 1] at T = 2). To overcome this problem, recall that the truncated
bounding expression BE2 only considers the scheme up to time T = 2 by setting
Ui = min {2, Ri}. Consequently, we can analyze a slightly different scheme with the
same bounding expression BE2(s) in which the device at R′ in time T = 2 is (s− 1)-
stable.7 The modification is simple: if the original scheme removes s′ ≥ s devices
from (0, 1] in (1, 2], no change is required; otherwise, s′ < s and the modified scheme
would simply remove s − s′ additional arbitrary devices from (0, 1) at time T = 2.
This transformation leaves BE2(s) unchanged, and we can analyze it instead. Note
that the modified scheme maintains all properties of Section 2 at times T < 2.

We first consider the case in which there is no device update in the time period
(R0 = 1, R′), implying that R′ = R1 ≤ 1/(1 − b). We can now apply the induction
hypothesis from T = R1 with i = s − 1 since at least s − 1 devices are removed
from (0, R1) before the device at R1 is updated again, namely, the device at R1 is
(s− 1)-stable (we have an (s− 1)-normalized backup scheme). Therefore

b ·BE2(s) ≤ b ·BE2(s− 1) ·R1 + b ·R1 = (b ·BE2(s− 1) + b) ·R1

≤
((

(1− b)1−s − 1
)

+ b
)
· 1

1− b = (1− b)−s − 1.

7 There are other ways to solve the problem and apply the induction hypothesis, e.g., by extending
the definition of a stable device. However, this seems to require slightly more complex definitions
and induction hypothesis.
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Note that the multiplication of BE2(s−1) with R1 undoes the normalization of the
bounding expression at time T = R1, and the addition with b ·R1 is because BE2(s)
should account for R1, but BE2(s− 1) should not.

We also note that this actually proves a (slightly) stronger result, since when
calculating BE2(s) from T = 1, we do not add terms larger than T = 2, but when
calculating BE2(s − 1) from T = R1, the restriction is looser, namely, not to add
terms larger than T = 2 · R1 > 2. Therefore, if BE2(s− 1) actually contains terms
in the time period (2, 2 ·R1], then BE2(s) is strictly smaller than (1− b)−s − 1.

We are left to prove the hypothesis for i = s given that there is at least one
device update in the time period (R0 = 1, R′). Since there in no device in the time
period (R0 = 1, R′) in the snapshot at T = 2, then R′ ≤ R0+2b = 1+2b. Therefore,
R′/R0 ≤ 1 + 2b < 1/ (1− b)2 and by Property 6 there is exactly one update in
(R0 = 1, R′). Therefore, the update in (R0 = 1, R′) occurred at time R1, and we
denote by ` the label of the actual device involved. Furthermore, we have R′ = R2.

8

Denote by x the time (after R1) of the next update of ` (R2 < x ≤ 2). After
time x, all devices were removed from (R0 = 1, R2), hence R2 ≤ 1 + b · x. As in the
previous case, we apply the induction hypothesis from T = R′ = R2 with i = s− 1
since we are assured that at least s− 1 devices are removed from (0, R2) before R2

is updated (including `), hence the device updated at R2 is (s− 1)-stable. We get

b ·BE2(s) ≤ b ·BE2(s−1) ·R2 + b
(
R2 + 1

1−b − x
)

. Note that we add b
(

1
1−b − x

)
to

the right hand side (to bound b ·BE2(s)) since ` is first updated at R1 ≤ 1
1−b after

T = 1, and not at x, which is the time it is first updated after R2 (as considered in
BE2(s − 1)). Once again, we will prove a slightly stronger result than required, as
BE2(s− 1) calculated from T = R2 may contain terms which are larger than 2.

8 The only use of truncating the bounding expression at T = 2 in the proof is to limit the number
of updates in (R0 = 1, R′) to one.

22



Recalling that R2 ≤ 1 + bx, we obtain

b ·BE2(s) ≤ b ·BE2(s− 1) ·R2 + b

(
R2 +

1

1− b − x
)

= (b ·BE2(s− 1) + b)R2 − b
(
x− 1

1− b

)
≤
(
(1− b)1−s − 1 + b

)
(1 + bx)− b

(
x− 1

1− b

)
=
(
(1− b)−s − 1

)
(1− b) (1 + bx)− b

(
x− bx− b

1− b

)
=
(
(1− b)−s − 1

)
(1 + b (x− bx− b))− b (x− bx− b)

1− b
= (1− b)−s − 1 + b (x− bx− b)

(
(1− b)−s − 1− 1

1− b

)
= (1− b)−s − 1 + b

(
x− 1

1− b

)(
(1− b)1−s − 2 + b

)
.

In order to show that b ·BE2(s) ≤ (1− b)−s − 1, it is sufficient to show that

b

(
x− 1

1− b

)(
(1− b)1−s − 2 + b

)
≤ 0.

Obviously b > 0; there are 3 device updates in the time period [1, R2], so by Prop-
erty 5, x > R2 >

1
1−b ; lastly, s ≤ k/2 so (1− b)−s ≤ (1− b)−k/2 ≤ 2 by the lemma’s

assumption, which gives

(1− b)1−s − 2 + b ≤ 2 (1− b)− 2 + b = −b < 0.

This completes the induction and the proof of the lemma. �

Corollary 2. For all even k ≥ 2 we have (1 − ck/k)−k/2 ≥ 2. In particular, ck ≥
(1− o (1)) ln 4.

Proof. Write b = ck/k and assume for the sake of contradiction that (1− b)−k/2 < 2.
By Lemma 1 and Proposition 9 we have 1 ≤ b ·BE2(k/2) ≤ (1−b)−k/2−1 for a k/2-
normalized ck-efficient k-scheme, so (1− b)−k/2 ≥ 2, contradicting our assumption.
Now

ck
k
≥ 1− 2−2/k = 1− e− ln 4/k ≥ ln 4

k
− 1

2

(
ln 4

k

)2

,

hence ck ≥ (1− (ln 2) /k) ln 4. �
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6 Concluding Remarks and Open Problems

In this paper we rigorously defined the new problem of how to use k backup de-
vices in order to optimally protect a computer system against sophisticated cyber
and ransomware attacks. For small values of k < 10 we described concrete backup
schemes and proved their optimality, and for large values of k we found matching
upper and lower bounds on the asymptotic efficiency of such schemes. The most
interesting open problems are to consider other formalizations of the problem (e.g.,
using randomized schemes, average rather than worst case efficiency measures, or a
variable number of storage devices), and to find additional provably optimal backup
schemes for k ≥ 10.
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