A History of Lattice-Based Encryption (in order of increasing efficiency)

Vadim Lyubashevsky INRIA / ENS, Paris

Lattice-Based Encryption Schemes

- 1. NTRU [Hoffstein, Pipher, Silverman '98]
- 2. LWE-Based [Regev '05]
- 3. Ring-LWE Based [L, Peikert, Regev '10]
- 4. "NTRU-like" with a proof of security [Stehle, Steinfeld '11]

THE SUBSET SUM PROBLEM

Subset Sum Problem

 a_i , T in Z_M

a_i are chosen randomly T is a sum of a random subset of the a_i

> a₁ a₂ a₃ ... a_n T Find a subset of a_i's that sums to T (mod M)

Subset Sum Problem

 $\mathbf{a}_{\mathbf{i}}$, T in \mathbf{Z}_{49}

a_i are chosen randomly T is a sum of a random subset of the a_i 15 31 24 3 14 11 15 + 31 + 14 = 11 (mod 49)

How Hard is Subset Sum?

 a_i , T in Z_M a_1 a_2 a_3 ... a_n T Find a subset of a_i 's that sums to T (mod M)

Hardness Depends on:

- Size of n and M
- Relationship between n and M

Complexity of Solving Subset Sum

Subset Sum Crypto

- Why?
 - simple operations
 - exponential hardness
 - very different from number theoretic assumptions
 - resists quantum attacks

Subset Sum is "Pseudorandom"

[Impagliazzo-Naor 1989]:

For random $a_1, ..., a_n$ in Z_M and random $x_1, ..., x_n$ in $\{0, 1\}$, distinguishing the distribution

 $(a_1,...,a_n, a_1x_1+...+a_nx_n \mod M)$

from the uniform distribution $U(Z_M^{n+1})$

is as hard as finding x_1, \dots, x_n

What About Public-Key Encryption?

- Many early attempts
- None of them had proofs of security
- All seem to be broken

Merkle-Hellman Cryptosystem

 $a_1,...,a_n$ are super-increasing $(a_i > a_1 + ... + a_{i-1})$ knowing a_1, \dots, a_n and $a_1 x_1 + \dots + a_n x_n$, we can recover all the x_i <u>Secret key</u>: Super-increasing a₁,...,a_n, and $M > a_1 + ... + a_n$ and r such that gcd(r,M)=1 <u>Public Key</u>: w_i=ra_i mod M $Encrypt(x_1,...,x_n) = w_1x_1 + ... + w_nx_n$ $=r(a_1x_1+...+a_nx_n)$ Decrypt(T): Compute r⁻¹T mod M and recover all x_i

Merkle-Hellman Cryptosystem

CRYPTOSYSTEM BASED ON SUBSET SUM

[L, PALACIO, SEGEV 2010]

Subset Sum Cryptosystem

- Semantically secure based on Subset Sum for $M \approx n^n$
- Main tools

Subset sum is pseudo-random Addition in $(Z_q)^n$ is "kind of like" addition in Z_M where M=qⁿ

• The proof is very simple

Facts About Addition

Want to add 4679 + 3907 + 8465 + 1343 mod 10⁴

2	1	2							
4	6	7	9		4	6	7	9	
3	9	0	7		3	9	0	7	
8	4	6	5		8	4	6	5	
1	3	4	3		1	3	4	3	
8	3	9	4		6	2	7	4	

Adding n numbers (written in base q) modulo q^m

 \rightarrow carries < n

If q>>n, then Adding with carries \approx Adding without carries

(i.e. in Z_M) (i.e. in $(Z_q)^n$)

Column Subset Sum Addition Is Also Pseudorandom

"Hybrid" Subset Sum Addition Is Also Pseudorandom

Is pseudo-random based on the hardness

of the subset sum problem

CRYPTOSYSTEM BASED ON LWE

[REGEV 2005]

(what we needed)

Picking the "Carries"

• In Subset Sum: carries were deterministic

• What if ... we pick the "carries" at random from some distribution?

LWE vs. Subset Sum

- The Subset Sum assumption has "deterministic noise"
- The LWE assumption is more "versatile"

LWE vs. Subset Sum

- The Subset Sum assumption has "deterministic noise"
- The LWE assumption is more "versatile"

LWE / Subset Sum Encryption

n-bit Encryption	Have	Want
Public Key Size	Õ(n) / Õ(n²)	O(n)
Secret Key Size	Õ(n) / Õ (n²)	O(n)
Ciphertext Expansion	Õ(n) / Õ (1)	O(1)
Encryption Time	Õ(n³) / Õ (n²)	O(n)
Decryption Time	Õ(n²)	O(n)

CRYPTOSYSTEM BASED ON RING-LWE

[L, PEIKERT, REGEV 2010]

Source of Inefficiency of LWE

Getting just **one** extra random-looking number requires **n** random numbers and a small error element.

Wishful thinking: get **n** random numbers and produce **n** pseudo-random numbers in "one shot"

Use Polynomials

f(x) is a polynomial $x^{n} + a_{n-1}x^{n-1} + ... + a_{1}x + a_{0}$

 $R = Z_p[x]/(f(x))$ is a polynomial ring with

- Addition mod p
- Polynomial multiplication mod p and f(x)

Each element of R consists of n elements in Z_p

In R:

- small+small = small
- small*small = small (depending on f(x))

Polynomial Interpretation of the LWEbased cryptosystem

Security

Pseudorandom??

Decision Learning With Errors over Rings

World 1 World 2 b_1 b_1 S **a**₁ **a**₁ b_2 b_2 **a**₂ **a**₂ b_3 b_3 **a**₃ **a**₃ + b_m b_m a_m \mathbf{a}_{m}

<u>Theorem</u> [LPR '10]: In *cyclotomic* rings, Search-RLWE < Decision-RLWE

Security

Pseudorandom!!

Use Polynomials in Z_p[x]/(f(x))

n-bit Encryption	From LWE / SS	From Ring-LWE
Public Key Size	Õ(n) /Õ(n²)	Õ(n)
Secret Key Size	Õ(n) / Õ (n²)	Õ(n)
Ciphertext Expansion	Õ(n) / Õ (1)	Õ(1)
Encryption Time	Õ(n ³) / Õ (n ²)	Õ(n)
Decryption Time	Õ(n²)	Õ(n)

1-ELEMENT CRYPTOSYSTEM BASED ON RING-LWE

[STEHLE, STEINFELD 2011]

Number of Ring Elements

Encryption of m:

u, **v** +
$$\frac{p}{2}$$
 m

Can you have a ciphertext with just 1 ring element?

Stehle, Steinfeld Cryptosystem

NTRU CRYPTOSYSTEM

[HOFFSTEIN, PIPHER, SILVERMAN 1998]

NTRU Cryptosystem

Since f, g are smaller, p can be smaller as well

(Textbook) NTRU Cryptosystem / Trap-Door Function

f g - Very small

References

- Jeffrey Hoffstein, Jill Pipher, Joseph H. Silverman (1998): NTRU: A Ring-Based Public Key Cryptosystem
- Oded Regev (2005): On lattices, learning with errors, random linear codes, and cryptography
- Vadim Lyubashevsky, Adriana Palacio, Gil Segev (2010): Public-Key Cryptographic Primitives Provably as Secure as Subset Sum
- Vadim Lyubashevsky, Chris Peikert, Oded Regev (2010): On Ideal Lattices and Learning with Errors over Rings
- Damien Stehlé, Ron Steinfeld (2011): Making NTRU as Secure as Worst-Case Problems over Ideal Lattices