Proving Hardness of LWE
(based on [R05, J. of the ACM])

Oded Regev
Tel Aviv University, CNRS, ENS-Paris
Outline

- Introduction to lattices
- Main theorem: hardness of LWE
- Proof of main theorem
 - Overview
 - Part I: Quantum
 - Part II: Classical
Lattices

Basis:
\(\mathbf{v}_1, \ldots, \mathbf{v}_n \) vectors in \(\mathbb{R}^n \)

The lattice \(L \) is
\[
L = \{a_1 \mathbf{v}_1 + \ldots + a_n \mathbf{v}_n \mid a_i \text{ integers}\}
\]

The dual lattice of \(L \) is
\[
L^* = \{x \mid \forall y \in L, \langle x, y \rangle \in \mathbb{Z}\}.
\]
Shortest Independent Vectors Problem (SIVP)

- SIVP: Given a lattice, find a ‘short’ set of n linearly independent lattice vectors (say within factor n of shortest)
SIVP Seems Hard

- **Best known algorithm runs in time** 2^n

 [AjtaiKumarSivakumar01,...]

- **No better quantum algorithm known!**

- **On the other hand, not believed to be NP-hard**

 [GoldreichGoldwasser00, AharonovR04]
Bounded Distance Decoding

- BDD_d: Given a lattice and a target vector within distance d, find the closest lattice point.
Main Theorem

Hardness of LWE
LWE

• Fix some $p < \text{poly}(n)$
• Let $s \in \mathbb{Z}_p^n$ be a secret
• We have random equations modulo p with error:

\[2s_1 + 0s_2 + 2s_3 + 1s_4 + 2s_5 + 4s_6 + \ldots + 4s_n \approx 2 \]
\[0s_1 + 1s_2 + 5s_3 + 0s_4 + 6s_5 + 6s_6 + \ldots + 2s_n \approx 4 \]
\[6s_1 + 5s_2 + 2s_3 + 0s_4 + 5s_5 + 2s_6 + \ldots + 0s_n \approx 2 \]
\[6s_1 + 4s_2 + 4s_3 + 4s_4 + 3s_5 + 3s_6 + \ldots + 1s_n \approx 5 \]

\ldots

\ldots

\ldots
• More formally, we need to learn s from samples of the form $(t, st+e)$ where t is chosen uniformly from \mathbb{Z}_p^n and e is chosen from \mathbb{Z}_p

• Easy algorithms need $2^{O(n \log n)}$ equations/time

• Best algorithm needs $2^{O(n)}$ equations/time
 [BlumKalaiWasserman’00]

• Subexponential algorithm if noise $< \sqrt{n}$ [AroraGe’11]
Main Theorem

LWE is as hard as worst-case lattice problems using a quantum reduction

• In other words: solving LWE implies an efficient quantum algorithm for lattices
Why Quantum?

• As part of the reduction, we need to perform a certain algorithmic task on lattices
• We do not know how to do it classically, only quantumly!
Why Quantum?

- We are given an oracle that solves BDD_d for some small d
- As far as I can see, the only way to generate inputs to this oracle is:
 - Somehow choose $x \in L$
 - Let y be some random vector within $dist\ d$ of x
 - Call the oracle with y
- The answer is x. But we already know the answer !!
- Quantumly, being able to compute x from y is very useful: it allows us to transform the state $|y, x\rangle$ to the state $|y, 0\rangle$ reversibly (and then we can apply the quantum Fourier transform)
Proof of the Main Theorem

Overview
Gaussian Distribution

- Recall the discrete Gaussian distribution on a lattice (normalization omitted):

\[\forall x \in L, \quad D_r(x) = e^{-\|x/r\|^2} \]

- We can efficiently sample from \(D_r \) for large \(r = 2^n \)
The Reduction

- Assume the existence of an algorithm for LWE for $p = 2\sqrt{n}$

- Our lattice algorithm:
 - $r = 2^n$
 - Take $\text{poly}(n)$ samples from D_r
 - Repeat:
 - Given $\text{poly}(n)$ samples from D_r, compute $\text{poly}(n)$ samples from $D_{r/2}$
 - Set $r \leftarrow r/2$
 - When r is small, output a short vector
$D_{r/2}$
Obtaining $D_{r/2}$ from D_r

- **Lemma 1:**
 Given poly(n) samples from D_r, and an LWE oracle, we can solve $\text{BDD}_{p/r}$ in L^*
 - Classical

- **Lemma 2:**
 Given a solution to BDD_d in L^*, we can obtain samples from $D_{\sqrt{n/d}}$
 - Quantum
 - Based on the quantum Fourier transform

$p=2\sqrt{n}$
Samples from D_r in L

Samples from $D_{r/2}$ in L

Samples from $D_{r/4}$ in L

Solution to $BDD_{p/r}$ in L^*

Solution to $BDD_{2p/r}$ in L^*

Solution to $BDD_{4p/r}$ in L^*

Classical, uses LWE oracle

Quantum
Dual world (L*)

Primal world (L)

D_r

$D_{r/2}$

f_1/r

f_2/r
Fourier Transform

- The Fourier transform of D_r is given by
 \[f_{1/r}(x) \approx e^{-\|r \cdot \text{dist}(x, L^*)\|^2} \]

- Its value is
 - 1 for x in L^*,
 - e^{-1} at points of distance $1/r$ from L^*,
 - ≈ 0 at points far away from L^*.
Proof of the Main Theorem

Lemma 2: Obtaining $D_{\sqrt{n/d}}$ from BDD_d
Assume we can solve BDD_d; we’ll show how to obtain samples from $D_{\sqrt{n/d}}$

Step 1:
Create the quantum state

$$\sum_{x \in \mathbb{R}^n} \frac{f_d}{\sqrt{n}}(x) |x\rangle$$

by adding a Gaussian to each lattice point and **uncomputing** the lattice point using the BDD algorithm
From BDD$_d$ to D$_{\sqrt{n/d}}$

- **Step 2:**
 Compute the quantum Fourier transform of
 \[\sum_{x \in \mathbb{R}^n} f_d/\sqrt{n}(x) |x\rangle \]
 It is exactly D$_{\sqrt{n/d}}$!!

- **Step 3:**
 Measure and obtain one sample from D$_{\sqrt{n/d}}$

- By repeating this process, we can obtain poly(n) samples
Proof of the Main Theorem

Lemma 1: Solving $\text{BDD}_{p/r}$ given samples from D_r and an LWE oracle
It’s enough to approximate $f_{p/r}$

- **Lemma**: being able to approximate $f_{p/r}$ implies a solution to $\text{BDD}_{p/r}$

- **Proof Idea** – walk uphill:
 - $f_{p/r}(x) > \frac{1}{4}$ for points x of distance $< p/r$
 - Keep making small modifications to x as long as $f_{p/r}(x)$ increases
 - Stop when $f_{p/r}(x)=1$ (then we are on a lattice point)
What’s ahead in this part

- For warm-up, we show how to approximate \(f_{1/r} \) given samples from \(D_r \)
 - No need for the LWE oracle
 - This is main idea in [AharonovR’04]

- Then we show how to approximate \(f_{2/r} \) given samples from \(D_r \) and an LWE oracle (for \(p=2 \))

- Approximating \(f_{p/r} \) is similar
Warm-up: approximating $f_{1/r}$

- Let's write $f_{1/r}$ in its Fourier representation:
 \[f_{1/r}(x) = \sum_{w \in L} \hat{f}_{1/r}(w) \cos(2\pi \langle w, x \rangle) \]
 \[= \sum_{w \in L} D_r(w) \cos(2\pi \langle w, x \rangle) \]
 \[= E_{w \sim D_r} [\cos(2\pi \langle w, x \rangle)] \]

- Using samples from D_r, we can compute a good approximation to $f_{1/r}$
 (this is the main idea in [AharonovR’04])
• Consider the Fourier representation again:

\[f_{1/r}(x) = E_{w \sim D_r} [\cos(2\pi \langle w, x \rangle)] \]

• For \(x \in L^* \), \(\langle w, x \rangle \) is integer for all \(w \) in \(L \) and therefore we get \(f_{1/r}(x) = 1 \)

• For \(x \) that is close to \(L^* \), \(\langle w, x \rangle \) is distributed around an integer. Its standard deviation can be (say) 1.
Approximating $f_{2/r}$

- **Main idea:** partition D_r into 2^n distributions
- **For** $t \in (Z_2)^n$, denote the translate t by D^t_r
- **Given a lattice point we can compute its** t
- **The probability on** $(Z_2)^n$ **obtained by sampling from** D_r **and outputting** t **is close to uniform**
Approximating $f_{2/r}$

- Hence, by using samples from D_r, we can produce samples from the following distribution on pairs (t,w):
 - Sample $t \in (\mathbb{Z}_2)^n$ uniformly at random
 - Sample w from D^t_r

- Consider the Fourier transform of D^t_r

$$f^t_{2/r}(x) = E_{w \sim D^t_r} [\cos(\pi \langle w, x \rangle)]$$
\[f_{2/r}^{0,0} = f_{2/r} \]
$f^{1,1}_{2/r}$
Approximating $f_{2/r}$

- The functions $f^t_{2/r}$ look almost like $f_{2/r}$
- Only difference is that some Gaussians have their sign flipped
- Approximating $f^t_{2/r}$ is enough: we can easily take the absolute value and obtain $f_{2/r}$
- For this, however, we need to obtain several pairs (t,w) for the same t
- The problem is that each sample (t,w) has a different t!
Approximating $f_{2/r}$

- Fix x close to L^*
- The sign of its Gaussian is ± 1 depending on $\langle s, t \rangle \mod 2$ for $s \in (Z_2)^n$ that depends only on x
- The distribution of $\langle x, w \rangle \mod 2$ when w is sampled from D^r_t is centred around $\langle s, t \rangle \mod 2$
- Hence, we obtain equations modulo 2 with error:

\[
\begin{align*}
\langle s, t_1 \rangle & \approx \left\lfloor \langle x, w_1 \rangle \right\rfloor \mod 2 \\
\langle s, t_2 \rangle & \approx \left\lfloor \langle x, w_2 \rangle \right\rfloor \mod 2 \\
\langle s, t_3 \rangle & \approx \left\lfloor \langle x, w_3 \rangle \right\rfloor \mod 2 \\
\vdots & \\
\vdots & \\
\end{align*}
\]
Approximating $f_{2/r}$

- Using the LWE oracle, we solve these equations and obtain s
- Knowing s, we can cancel the sign
- Averaging over enough samples gives us an approximation to $f_{2/r}$
Open Problems

1. What happens for small moduli, say p=2 (learning parity with noise (LPN))?

2. Dequantize the reduction:
 - This would immediately improve the security of all LWE-based crypto
 - Main obstacle: what can one do classically with a solution to \(\text{BDD}_d \)? (see [Peikert09])

3. Use quantum hardness assumptions to prove security of other cryptosystems
More Recent Work

• [Peikert09] classical reduction, but exponential modulus and based on GapSVP only

• [StehléSteinfeldTanakaXagawa09] direct quantum reduction from SIS to LWE using the quantum part (but gives weaker hardness of LWE), as well as a ring version of LWE

• [LyubashevskyPeikert09] Ring-LWE
Thanks !!