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Lattice-Based One-Way Functions
> Public key [ A } € Z™ for ¢ = poly(n), m = Q(nlog q).
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fa(x) = Axmod q € Zy

(“short” x, surjective)

CRHF if SIS hard [Ajtai'96,...]
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Lattice-Based One-Way Functions
> Public key [ A } € Z™ for ¢ = poly(n), m = Q(nlog q).
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Lattice-Based One-Way Functions
> Public key [ A } € Z™ for ¢ = poly(n), m = Q(nlog q).

fa(x) = Axmod q € Zy ga(s,e) = s'A + et mod g € Zy'
(“short” x, surjective) (“short” e, injective)

CRHF if SIS hard [Ajtai'96,. . .] OWEF if LWE hard [Regev'05,P'09]

> Lattice interpretation: At (A) = {x € Z™ : fa(x) = Ax = 0 mod ¢}

(0, q)

o ) (4,0)

~1—

Lattice-Based Crypto & Applications, Bar-llan University, Israel 2012 2/16



Lattice-Based One-Way Functions
> Public key [ A } € Z™ for ¢ = poly(n), m = Q(nlog q).

fa(x) = Axmod q € Zy ga(s,e) = s'A + et mod g € Zy'
(“short” x, surjective) (“short” e, injective)

CRHF if SIS hard [Ajtai'96,. . .] OWEF if LWE hard [Regev'05,P'09]

> Lattice interpretation: AL (A) = {x € Z™: fa(x) = Ax = umod ¢}
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Lattice-Based One-Way Functions
> Public key [ A } € Z™ for ¢ = poly(n), m = Q(nlog q).

fa(x) = Axmod q € Z7 ga(s,e) =s'A +e' mod g € Z7'

(“short” x, surjective) (“short” e, injective)

CRHF if SIS hard [Ajtai'9e,. . .] OWEF if LWE hard [Regev'05,P'09]

» fa, ga in forward direction yield CRHFs, CPA security (w/FHE!)
... but not much else.
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Trapdoor Inversion

» Many cryptographic applications need to invert fa and/or ga.
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Trapdoor Inversion

» Many cryptographic applications need to invert fa and/or ga.
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Invert ga(s,e) = stA + el
find the unique preimage s

(equivalently, e)
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Trapdoor Inversion

» Many cryptographic applications need to invert fa and/or ga.

Invert u = fa(x') = Ax":

sample random x ¢ f*(u)

with prob oc exp(—||x|?/s?).
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Trapdoor Inversion

» Many cryptographic applications need to invert fa and/or ga.

Invert u = fa(x') = Ax":

sample random x ¢ f*(u)

with prob oc exp(—||x|?/s?).

Invert ga(s,e) = stA + el
find the unique preimage s

(equivalently, e)

» How? Use a “strong trapdoor” for A: a short basis of A+(A)

i+
EAs
i
L AR
E 4t
& 4obrh T +
+ F b
gt ++*;W+ e AR
AT i - At
PR, + R
i, T AL AT
A S AT A
Y T+ T
A A S e At
AT T e T

Lattice-Based Crypto & Applications, Bar-llan University, Israel 2012

[Babai'86,GGH’97,Klein'01,GPV'08,P'10]

3/16



Applications of Strong Trapdoors

Canonical App: [GPV'08] Signatures

» pk = A, sk = short basis for A, random oracle H: {0,1}* — Zj.
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Applications of Strong Trapdoors

Canonical App: [GPV'08] Signatures
» pk = A, sk = short basis for A, random oracle H: {0,1}* — Zj.

> Sign(m): let u = H(m) and output Gaussian x + f,'(u)
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Applications of Strong Trapdoors

Canonical App: [GPV'08] Signatures

» pk = A, sk = short basis for A, random oracle H: {0,1}* — Zj.

> Sign(m): let u = H(m) and output Gaussian x + f,'(u)
» Verify(m,x): check fa(x) = Ax = H(m) and x “short enough”
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Applications of Strong Trapdoors

Canonical App: [GPV'08] Signatures

» pk = A, sk = short basis for A, random oracle H: {0,1}* — Zj.

> Sign(m): let u = H(m) and output Gaussian x + f,'(u)

» Verify(m,x): check fa(x) = Ax = H(m) and x “short enough”

» Security: finding “short enough” preimages in fao must be hard
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Applications of Strong Trapdoors

Canonical App: [GPV'08] Signatures
» pk = A, sk = short basis for A, random oracle H: {0,1}* — Zy.

> Sign(m): let u = H(m) and output Gaussian x + f,'(u)
» Verify(m,x): check fa(x) = Ax = H(m) and x “short enough”

» Security: finding “short enough” preimages in fao must be hard

| A\,

Other “Black-Box" Applications of f~1, g1
» Standard Model (no RO) signatures [CHKP'10,R’10,B'10]
» SM CCA-secure encryption [PW'08,P'09]
» SM (Hierarchical) IBE [GPV'08,CHKP'10,ABB'10a,ABB’10b]

» Many more: OT, NISZK, homom enc/sigs, deniable enc, func enc, ...
[PVW'08,PV'08,GHV'10,GKV'10,BF'10a,BF'10b,0PW'11,AFV'11, ABVVW'11,. . .]

v
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Applications of Strong Trapdoors

Canonical App: [GPV'08] Signatures

» pk = A, sk = short basis for A, random oracle H: {0,1}* — Zj.
> Sign(m): let u = H(m) and output Gaussian x + f,'(u)
» Verify(m,x): check fa(x) = Ax = H(m) and x “short enough”

» Security: finding “short enough” preimages in fao must be hard

Some Drawbacks. . .

| \

X Generating A w/ short basis is complicated and slow [Ajtai’99,AP’09]

A

Lattice-Based Crypto & Applications, Bar-llan University, Israel 2012 4/16
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X Generating A w/ short basis is complicated and slow [Ajtai’99,AP’09]

X Known inversion algorithms trade quality for efficiency
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Applications of Strong Trapdoors

Canonical App: [GPV'08] Signatures
» pk = A, sk = short basis for A, random oracle H: {0,1}* — Zy.

> Sign(m): let u = H(m) and output Gaussian x + f,'(u)
» Verify(m,x): check fa(x) = Ax = H(m) and x “short enough”

» Security: finding “short enough” preimages in fao must be hard

Some Drawbacks. . .

| \

X Generating A w/ short basis is complicated and slow [Ajtai’99,AP’09]

X Known inversion algorithms trade quality for efficiency

tight, iterative, fp | looser, parallel, offline

e [Babai’86] [Babai'86]

At [Klein'01,GPV'08] [P'10]

A
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Taming the Parameters
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Taming the Parameters
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@ Trapdoor generator yields some lattice dim m > Cnloggq.
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Taming the Parameters
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@ Trapdoor generator yields some lattice dim m > Cnloggq.

® Basis “quality” = lengths of basis vectors ~ Gaussian std dev s.
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@ Trapdoor generator yields some lattice dim m > Cnloggq.

® Basis “quality” = lengths of basis vectors ~ Gaussian std dev s.

©® Dimension m, std dev s = preimage length § = ||x| ~ sy/m.
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@ Trapdoor generator yields some lattice dim m > Cnloggq.

® Basis “quality” = lengths of basis vectors ~ Gaussian std dev s.

©® Dimension m, std dev s = preimage length § = ||x| ~ sy/m.

O Security: choose n, ¢ so that finding 8-bounded preimages is hard.
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Taming the Parameters
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@ Trapdoor generator yields some lattice dim m > Cnloggq.
® Basis “quality” = lengths of basis vectors ~ Gaussian std dev s.
©® Dimension m, std dev s = preimage length § = ||x| ~ sy/m.
O Security: choose n, ¢ so that finding 8-bounded preimages is hard.
v/ Better dimension m & quality s
= “win-win-win" in security-keysize-runtime
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This Talk mp12]

“Strong” trapdoor generation and inversion algorithms:

Lattice-Based Crypto & Applications, Bar-llan University, Israel 2012 6/16



This Talk mp12]

“Strong” trapdoor generation and inversion algorithms:

v’ Very simple & fast

* Generation: one matrix mult. No HNF or inverses (cf. [A’99,AP'09])
* Inversion: practical, parallel, & mostly offline

* No more efficiency-vs-quality tradeoff
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This Talk mp12]

“Strong” trapdoor generation and inversion algorithms:

v’ Very simple & fast

* Generation: one matrix mult. No HNF or inverses (cf. [A’99,AP'09])
* Inversion: practical, parallel, & mostly offline

* No more efficiency-vs-quality tradeoff

v/ Tighter parameters m and s

* Asymptotically optimal with small constant factors

* Ex improvement: 32x in dim m, 25x in quality s = 67x in keysize
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“Strong” trapdoor generation and inversion algorithms:

v’ Very simple & fast

* Generation: one matrix mult. No HNF or inverses (cf. [A’99,AP'09])
* Inversion: practical, parallel, & mostly offline

* No more efficiency-vs-quality tradeoff

v/ Tighter parameters m and s

* Asymptotically optimal with small constant factors

* Ex improvement: 32x in dim m, 25x in quality s = 67x in keysize

v New kind of trapdoor — not a basis! (But just as powerful.)
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This Talk mp12]

“Strong” trapdoor generation and inversion algorithms:

v’ Very simple & fast

* Generation: one matrix mult. No HNF or inverses (cf. [A’99,AP'09])
* Inversion: practical, parallel, & mostly offline

* No more efficiency-vs-quality tradeoff

v/ Tighter parameters m and s

* Asymptotically optimal with small constant factors

* Ex improvement: 32x in dim m, 25x in quality s = 67x in keysize

v New kind of trapdoor — not a basis! (But just as powerful.)

v’ More efficient applications: CCA, (H)IBE in standard model
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Overview of Methods
@ Design a fixed, public lattice defined by “gadget” matrix G.

Give fast, parallel, offline algorithms for f(_;l, g(_;l.
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Overview of Methods
@ Design a fixed, public lattice defined by “gadget” matrix G.

Give fast, parallel, offline algorithms for fél, g(_;l.

® Randomize G < A via a “nice” unimodular transformation.

(The transformation is the trapdoor!)
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Overview of Methods
@ Design a fixed, public lattice defined by “gadget” matrix G.

Give fast, parallel, offline algorithms for f(_;l, g(_;l.

® Randomize G < A via a “nice” unimodular transformation.

(The transformation is the trapdoor!)

© Reduce f;l, ggl to fal, gal plus pre-/post-processing.
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Step 1: Gadget G and Inversion Algorithms

» Let ¢ = 2*. Define 1-by-k “parity check” vector

gi=[1 2 4 - 261 ezl¥h
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Step 1: Gadget G and Inversion Algorithms

» Let ¢ = 2*. Define 1-by-k “parity check” vector
gi=[1 2 4 - 261 ezl¥h
> To invert LWE function gg: Zg x Z* — Zk:

s~g+e:[s+eo 2s+ep .- 2k*13+ek,1]modq.
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Step 1: Gadget G and Inversion Algorithms

» Let ¢ = 2*. Define 1-by-k “parity check” vector
gi=[1 2 4 - 261 ezl¥h
> To invert LWE function gg: Zg x Z* — Zk:
s-g+e= [s—i—eo 2s+ep .- 2k*13+ek,1] mod q.

* Get Isb(s) from 2¥=1s + ¢, ;. Then get next bit of s, etc.
Works exactly when every ¢; € [-%, 9).
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Step 1: Gadget G and Inversion Algorithms

» Let ¢ = 2*. Define 1-by-k “parity check” vector
gi=[1 2 4 - 261 ezl¥h
> To invert LWE function gg: Zg x Z* — Zk:
s-g+e= [s—i—eo 2s+ep .- 2k*13+ek,1] mod q.

* Get Isb(s) from 2¥=1s + ¢, ;. Then get next bit of s, etc.
Works exactly when every ¢; € [-%, 9).

* OR round entries and look up in table.
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Step 1: Gadget G and Inversion Algorithms

» Let ¢ = 2*. Define 1-by-k “parity check” vector
gi=[1 2 4 - 261 ezl¥h
> To invert LWE function gg: Zg x Z* — Zk:
s-g+e= [s—i—eo 2s+ep .- 2k*13+ek,1] mod q.

* Get Isb(s) from 2¥=1s + ¢, ;. Then get next bit of s, etc.
Works exactly when every ¢; € [-%, 9).

* OR round entries and look up in table.

» To sample Gaussian preimage for u = fq(x) := (g, x):
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Step 1: Gadget G and Inversion Algorithms

» Let ¢ = 2*. Define 1-by-k “parity check” vector
gi=[1 2 4 - 261 ezl¥h
> To invert LWE function gg: Zg x Z* — Zk:
s-g+e= [s—i—eo 2s+ep .- 2k*13+ek,1] mod q.

* Get Isb(s) from 2¥=1s + ¢, ;. Then get next bit of s, etc.
Works exactly when every ¢; € [-%, 9).

* OR round entries and look up in table.

» To sample Gaussian preimage for u = fg(x) := (g, x):

* For i< 0,...,k—1: choose z; < (2Z + u), let u < (u —x;)/2 € Z.
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Step 1: Gadget G and Inversion Algorithms
» Let ¢ = 2*. Define 1-by-k “parity check” vector
gi=[1 2 4 - 261 ezl¥h
> To invert LWE function gg: Zg x Z* — Zk:
s-g+e= [s—i—eo 2s+ep .- 2k*13+ek,1] mod q.

* Get Isb(s) from 2¥=1s + ¢, ;. Then get next bit of s, etc.
Works exactly when every ¢; € [-%, 9).

* OR round entries and look up in table.

» To sample Gaussian preimage for u = fg(x) := (g, x):
* For i< 0,...,k—1: choose z; < (2Z + u), let u < (u —x;)/2 € Z.

* OR presample many x < Z* and store in ¢ ‘buckets’ fy(x) for later.
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Step 1: Gadget G and Inversion Algorithms

> Another view: for g = [1 2 --- 2*71] the lattice At (g) has basis

S = q - e ZFF with S =2-1,.
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Step 1: Gadget G and Inversion Algorithms

> Another view: for g = [1 2 --- 2*71] the lattice At (g) has basis

S = q - e ZFF with S =2-1,.
2
1 2

The iterative inversion algorithms for f;, go are special cases of the
(randomized) “nearest-plane” algorithm [Babai’86,Klein’01,GPV'08].
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Step 1: Gadget G and Inversion Algorithms

> Another view: for g = [1 2 --- 2*71] the lattice At (g) has basis

S = q - e ZFF with S =2-1,.
2
1 2

The iterative inversion algorithms for f;, go are special cases of the
(randomized) “nearest-plane” algorithm [Babai’86,Klein’01,GPV'08].

--g.--
P DefineG=1,0¢g= B B - eZZankz_
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Step 1: Gadget G and Inversion Algorithms

> Another view: for g = [1 2 --- 2*71] the lattice At (g) has basis

S = q - e ZFF with S =2-1,.
2
1 2

The iterative inversion algorithms for f;, go are special cases of the
(randomized) “nearest-plane” algorithm [Babai’86,Klein’01,GPV'08].

..g.-.

P DefineG=1,0¢g= B B - eZZankz_

.. g ...
Now fél, gél reduce to n parallel (and offline) calls to fg_l, gg_l.
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Step 1: Gadget G and Inversion Algorithms

> Another view: for g = [1 2 --- 2*71] the lattice At (g) has basis

S = q - e ZFF with S =2-1,.
2
1 2

The iterative inversion algorithms for f;, go are special cases of the
(randomized) “nearest-plane” algorithm [Babai’86,Klein’01,GPV'08].

--g.--
P DefineG=1,0¢g= B B - eZZankz_

.. g ...
Now fal, gél reduce to n parallel (and offline) calls to fg_l, gg_l.

Also applies to H - G for any invertible H € Zg*".
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Step 2: Randomize G + A
@ Define semi-random [A | G] for uniform A e Z*™.

(Note: fA|G] g[A‘G] easily reduce to fél, gél [CHKP'10].)

Lattice-Based Crypto & Applications, Bar-llan University, Israel 2012 10/16



Step 2: Randomize G + A

@ Define semi-random [A | G] for uniform A e Z*™.

(Note: fA|G] g[A‘G] easily reduce to fél, gél [CHKP'10].)
® Choose “short” (Gaussian) R < Z™*™1984 and let

-R

A::[A]G][I I}:[A\G—AR}.

unimodular
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Step 2: Randomize G + A

@ Define semi-random [A | G] for uniform A e Z*™.

(Note: fA|G] g[A‘G] easily reduce to fél, gél [CHKP'10].)

® Choose “short” (Gaussian) R < Z™*™1984 and let

-R

A::[A]G][I I}:[A\G—AR}.

unimodular

* A is uniform if [A | AR] is: leftover hash lemma for m ~ nloggq.
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Step 2: Randomize G + A

@ Define semi-random [A | G] for uniform A e Z*™.

(Note: fA|G] g[A‘G] easily reduce to fél, gél [CHKP'10].)

® Choose “short” (Gaussian) R < Z™*™1984 and let

-R

A::[A]G][I I}:[A\G—AR}.

unimodular

* A is uniform if [A | AR] is: leftover hash lemma for m ~ nloggq.

With G = 0, we get Ajtai’s original method for constructing A with a
“weak” trapdoor of > 1 short vector (but not a full basis).
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Step 2: Randomize G + A

@ Define semi-random [A | G] for uniform A e Z*™.

(Note: fA|G] g[A‘G] easily reduce to fél, gél [CHKP'10].)

® Choose “short” (Gaussian) R < Z™*™1984 and let

-R

A::[A]G][I I}:[A\G—AR}.

unimodular

* A is uniform if [A | AR] is: leftover hash lemma for m ~ nloggq.

With G = 0, we get Ajtai’s original method for constructing A with a
“weak” trapdoor of > 1 short vector (but not a full basis).

* [I| A | —(AR; + Ry)] is pseudorandom (under LWE) for m = n.
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A New Trapdoor Notion
» We constructed A = [A | G — AR].
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A New Trapdoor Notion
» We constructed A = [A | G — AR].
> R is a trapdoor for A with tag H € Z;*" (H invertible) if
A-[B]=H G.
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A New Trapdoor Notion
» We constructed A = [A | G — AR].
> R is a trapdoor for A with tag H € Z;*" (H invertible) if
A-[B]=H G.

» The quality of R is s;(R) := Hmﬁ‘ix |IRull. (smaller is better.)
uf|=1
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A New Trapdoor Notion
» We constructed A = [A | G — AR].
> R is a trapdoor for A with tag H € Z;*" (H invertible) if
A-[B]=H G.

» The quality of R is s;(R) := Hmﬁ‘ix |IRull. (smaller is better.)
uf|=1

» Fact: s1(R) = (y/rows + v/cols) - r for Gaussian entries w/ std dev 7.
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A New Trapdoor Notion
» We constructed A = [A | G — AR].
> R is a trapdoor for A with tag H € Z;*" (H invertible) if
A-[B]=H G.

» The quality of R is s;(R) := Hmﬁ‘ix |IRull. (smaller is better.)
uf|=1

» Fact: s1(R) = (y/rows + v/cols) - r for Gaussian entries w/ std dev 7.
» Note: R is a trapdoor for A — [0 | H' - G] w/tag (H — H') [ABB'10].
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» Note: R is a trapdoor for A — [0 | H' - G] w/tag (H — H') [ABB'10].

Relating New and Old Trapdoors
Given a basis S for A+(G) and a trapdoor R for A,

we can efficiently construct a basis S5 for A+(A)
where [|Sal| < (s1(R) +1) - [IS]].
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A New Trapdoor Notion
» We constructed A = [A | G — AR].
> R is a trapdoor for A with tag H € Z;*" (H invertible) if
A-[B]=H G.

» The quality of R is s;(R) := Hmﬁ‘ix |IRull. (smaller is better.)
uf|=1

» Fact: s1(R) = (y/rows + v/cols) - r for Gaussian entries w/ std dev 7.
» Note: R is a trapdoor for A — [0 | H' - G] w/tag (H — H') [ABB'10].

Relating New and Old Trapdoors
Given a basis S for A+(G) and a trapdoor R for A,

we can efficiently construct a basis S5 for A+(A)
where [|Sal| < (s1(R) +1) - [IS]].

(But we'll never need to.)
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Step 3: Reduce f,', g' to f&' 9&'
> Suppose R is a trapdoor for A (w/tag H=1): A[®] =G.
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Step 3: Reduce f,', g' to f&' 9&'
> Suppose R is a trapdoor for A (w/tag H=1): A[®] =G.

Inverting LWE Function

Given bt = st A + et recover s from
B[] = s'G + 8],

Works if each entry of e![B] in [-4,9) < |le]| < ¢/(4s1([]}])).
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Sampling Gaussian Preimages
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» We have Ax = Gz = u as desired.
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Step 3: Reduce f;l, g;l to fal, gél
> Suppose R is a trapdoor for A (w/tag H=1): A[®] =G.

Inverting LWE Function

Given bt = st A + et recover s from

0

b}] =G +el[}].

Works if each entry of e![B] in [-4,9) < |le]| < ¢/(4s1([]}])).

Sampling Gaussian Preimages

Given u, sample z < f5'(u) and output x = [B]z € f ' (u) ?

> We have Ax = Gz = u as desired.
> Problem: [lﬁ]z is non-spherical Gaussian, leaks R !

» Solution: use offline ‘perturbation’ [P'10] to get spherical Gaussian w/
std dev ~ s1(R): output x = p + [} ]z.

Lattice-Based Crypto & Applications, Bar-llan University, Israel 2012 12/16



Application: Efficient IBE a2 [aBB'10]

» Setup: choose A = [A | —AR]. Let mpk = (A, u), msk = R.
(A has trapdoor R with tag 0.)
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Application: Efficient IBE a2 [aBB'10]

» Setup: choose A = [A | —AR]. Let mpk = (A, u), msk = R.
(A has trapdoor R with tag 0.)

> Extract(R,id): map id > invertible H;q € Zy*™.  [DF'94,...,ABB'10]

Using R, choose sk;q = x + f;ild(u), where

Aig=A+[0|Hy G]=[A|Hy G- AR].
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Application: Efficient IBE a2 [aBB'10]

» Setup: choose A = [A | —AR]. Let mpk = (A, u), msk = R.
(A has trapdoor R with tag 0.)

> Extract(R,id): map id > invertible H;q € Zy*".  [DF'94,...,ABB'10]

Using R, choose sk;q = x + f;ild(u), where
Aig=A+[0|Hy G]=[A|Hy G- AR].

» Encrypt to A;4, decrypt using sk;q as in ‘dual’ system [GPV'08].

» Security (“puncturing”): Given target id* (selective security), set up

A=[A|-Hy G-AR]= Ajy=[A | (H;y — Hiy)G — ARJ.

* H,;; — H;4« is invertible for all id # id*, so can extract sk;; using R.

* A;g- = [A | —AR], so can embed an LWE challenge at id*.
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Trapdoor Delegation [cHkP'10]
> Suppose R is a trapdoor for A, ie. A[R] =H-G.

Lattice-Based Crypto & Applications, Bar-llan University, Israel 2012 14/16



Trapdoor Delegation [cHkP'10]
> Suppose R is a trapdoor for A, ie. A[R] =H-G.

» To delegate a trapdoor for an extension [A | A'] with tag H', just
sample Gaussian R’ s.t.

[A|A[R]=H G < AR =H-G-A'
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Trapdoor Delegation [cHkP'10]
> Suppose R is a trapdoor for A, ie. A[R] =H-G.

» To delegate a trapdoor for an extension [A | A'] with tag H’, just
sample Gaussian R’ s.t.

[A|A[R]=H G < AR =H-G-A'

» One-way: R’ reveals nothing about R.

Useful for HIBE & IB-TDFs [CHKP'10,ABB'10,BKPW'12].

Lattice-Based Crypto & Applications, Bar-llan University, Israel 2012 14/16



Trapdoor Delegation [cHkP'10]
> Suppose R is a trapdoor for A, ie. A[R] =H-G.

» To delegate a trapdoor for an extension [A | A'] with tag H’, just
sample Gaussian R’ s.t.

[A|A[R]=H G < AR =H-G-A'

» One-way: R’ reveals nothing about R.
Useful for HIBE & IB-TDFs [CHKP'10,ABB'10,BKPW'12].
» Note: R’ is only width(A) x width(G) = m x nlogg.
So size of R/ grows only as O(m), not Q(m?) like a basis does

Also computationally efficient: nlog g samples, no HNF or ToBasis.
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Hierarchical IBE [cHkpP'10,ABB'10]

» Setup(d): choose Ay, ..., Ay where A, = [A( | Aq]
has trapdoor R for tag 0. Let msk = sk. = R. and mpk = {A;}.
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Hierarchical IBE [cHkpP'10,ABB'10]

» Setup(d): choose Ay, ..., Ay where A, = [A( | Aq]
has trapdoor R for tag 0. Let msk = sk. = R. and mpk = {A;}.
» Extract(id): map id = (idy,...,idt) — (Hiq,, ... H;q,) (invertible).
Let
Ag= [AO | Ay —{—Hile | | Ay +HidtG | At+1].
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Hierarchical IBE [cHkpP'10,ABB'10]
» Setup(d): choose Ay, ..., Ay where A, = [A( | Aq]
has trapdoor R for tag 0. Let msk = sk. = R. and mpk = {A;}.

» Extract(id): map id = (idy,...,idt) — (Hiq,, ... H;q,) (invertible).
Let
A= [AO | Ay —{—Hile | | Ay +HidtG | At+1].

Delegate sk;; = trapdoor R;4 for A4 with tag O.

Using sk;4, can delegate any sk;, for any nontrivial extension id’.

» Encrypt to A4, decrypt using R;4 as in [GPV'08].

» Security (“puncturing”): Set up mpk, trapdoor R with tags = —id*.
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Conclusions

» A simple trapdoor that's easy to generate, use, and understand:

Applications made easy, end-to-end!

P Key sizes and algorithms for “strong” trapdoors are now realistic
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