Session 7: Two-Party Secure Computation for Malicious Adversaries

Yehuda Lindell
Bar-Ilan University
This Session

- Constructing efficient secure two-party protocols for malicious adversaries
 - In principle, this problem is solved by GMW but is not efficient
 - Important: there is no honest majority here and so BGW techniques don’t work

- Session outline
 - Survey known approaches to the problem
 - Focus in detail on the cut-and-choose approach
 - Personal bias 😊
Yao’s Protocol and Malicious

- Malicious P_1 in Yao’s Protocol
 - A malicious P_1 can construct an incorrect circuit
 - This can harm correctness, privacy, and independence of inputs
 - A malicious P_1 can carry out a “selective input attack”
 - P_1 can input an incorrect key for the 0-value on the 1st bit of P_2’s input
 - This causes P_2 to abort if $y_1=0$ and to successfully compute output if $y_1=1$
 - In the ideal world, P_1 cannot make the abort depend on P_2’s input
Yao’s Protocol and Malicious

- Aim: force the circuit constructor to behave honestly
- This can be achieved using general ZK proofs, but this won’t be efficient
- What other ways can this be done?
 - It turns out that there are many other ways…
Approaches

1. Prove correctness of circuit construction using zero-knowledge
2. LEGO: prove correctness of gate construction and then solder gates together
3. Virtual MPC
4. From multiplication tuples to arithmetic circuit construction
5. Cut-and-choose to prove correctness of Yao circuits
Boolean vs Arithmetic

- Boolean circuits: AND/OR/XOR etc.
- Arithmetic circuits: ADD/MULT over some defined finite field

- What is better?
 - It depends on the application
 - AES:
 - 33,000 gates in a Boolean circuit
 - 2,400 gates over GF[2^8]
 - Branching is better in Boolean…
ZK Proving (Boolean Circuits)

Jarecki–Shmatikov (Eurocrypt 2007)

- Encrypt gates using asymmetric encryption with algebraic structure
 - Use Camenisch–Shoup based on DCR (N–residuosity);
 two exponentiations mod N^2

- Use structure to prove in zero knowledge that circuit is correctly constructed
 - Used correct keys
 - Gate has correct structure
 - And so on…
ZK Proving

- **O(1) exponentiations per gate**
 - What is O(1)? Here: 720
 - Also, these are N^2 exponentiations which are much more expensive than DH exponentiations which can be run in an Elliptic curve group

- **Optimizing the approach**
 - More efficient ZK protocols
 - Challenge: how to build the gates so that they yield efficient proofs
 - Batching of ZK protocols
LEGO (Boolean Circuits)

Nielsen–Orlandi (TCC 2009)

- Generate many encrypted gates using homomorphic commitments
- Open half of the gates to check that they are correctly formed
 - This guarantees that the majority of the remaining gates are correct
- Combine the remaining gates in a fault tolerant circuit
 - Use homomorphic property to “solder” the gates
- Compute the circuit
LEGO Efficiency

- Size of fault tolerant circuit $O(s \ |C|/\log |C|)$
 - Statistical security parameter s
 - Error is 2^{-s}, so can set $s=40$

- Number of exponentiations per gate is 32
 - Number of exponentiations is $1280|C|/\log |C|$
 - Exponentiations are regular Diffie–Hellman
Virtual MPC (Arithmetic Circuits)

Ishai–Prabhakaran–Sahai (Crypto 2008)

- Parties emulate a multiparty protocol with honest majority
 - Such protocols are much more efficient for arithmetic circuits

- Parties run 2–party protocols to simulate every step of the parties in the honest majority protocol
 - The parties use semi-honest protocols and “watchlists” to catch cheating
Multiplication Tuples (Arithmetic Circuits)

- Damgard–Orlandi (Crypto 2010)
- The protocol
 - Share the inputs
 - Addition: locally add shares (like BGW)
 - Multiplication: as in BGW, this is the hard part

- Based on an idea by Beaver from 1991
Multiplication Tuples

- **Setup**
 - Assume that the parties have many tuples of the form \([\text{Com}(x), \text{Com}(y), \text{Com}(z)]\) where \(x = y \cdot z\) together with additive shares \((x_1, x_2), (y_1, y_2)\) and \((z_1, z_2)\) of \((x, y, z)\), respectively.
 - In addition, \(\text{Com}\) is homomorphic
 - Can compute shares of \(\text{Com}(x+y)\) given shares of \(\text{Com}(x)\) and \(\text{Com}(y)\)
 - Can computes shares of \(\text{Com}(a \cdot x)\) given shares of \(a\) and shares of \(\text{Com}(x)\)
Multiplication Using Tuples

- **Multiplication**
 - **Wire 1**: P_1 and P_2 have additive shares u_1, u_2 of u
 - **Wire 2**: P_1 and P_2 have additive shares v_1, v_2 of v
 - **Aim**: compute shares of $w = u \cdot v$; i.e. compute w_1, w_2 such that $w_1 + w_2 = (u_1 + u_2)(v_1 + v_2)$
Multiplication Using Tuples

- **Computation:**
 - Parties have additive shares of \(\text{Com}(x) \), \(\text{Com}(y) \), \(\text{Com}(z) \) where \(x=y\cdot z \)
 - Compute shares of \(\text{Com}(u-y) \), and open; denote \(u' \)
 - Compute shares of \(\text{Com}(v-z) \), and open; denote \(v' \)
 - Compute shares of \(\text{Com}(u'\cdot v) + \text{Com}(v'\cdot u) + \text{Com}(x) - u'\cdot v' \)
 - What does it equal? Shares of:
 \[
 (u-y)\cdot v + (v-z)\cdot u + y\cdot z - (u-y)(v-z)
 = uv - yv + vu - zv + yz - uv + zv + yv - yz
 = u\cdot v
 \]
The Protocol

- Run a specific two-party computation to generate multiplication tuples
 - This uses a special-purpose protocol, secure for malicious adversaries
- Share the inputs using the homomorphic commitments
- Locally add shares for addition
- Use tuples as shown for multiplication
Cut-and-Choose (Boolean Circuits)

Lindell–Pinkas (Eurocrypt 2007, TCC 2011)

- The basic idea – prove that the Yao circuit is correctly constructed as follows:
 - P_1 constructs s garbled circuits and sends them to P_2
 - P_2 chooses a random subset of $\frac{1}{2}$ and sends it to P_1
 - P_1 “opens” these circuits by sending all of the garbled keys
 - P_2 checks that the circuits are correctly constructed
Cut-and-Choose

- **What is guaranteed?**
 - A *majority* of the remaining circuits are correctly constructed

- **The rest of the protocol**
 - The parties compute *all* of the remaining garbled circuits
 - It is not enough to compute one because it is only guaranteed that the majority are fine
Difficulties and Attacks

- What does P_2 do if it obtains different outputs?
 - **Option 1**: it detects P_1 cheating and so aborts
 - **Attack**: P_1 can use this to cheat:
 - P_1 constructs one circuit that outputs garbage if the first bit of P_2’s input equals 0 (otherwise, computes f)
 - If P_2 aborts, P_1 knows that P_2’s 1st input bit equals 0
 - **Option 2**: output majority value
 - This is the correct option; sometimes need to be quiet even when cheating is detected!
Difficulties and Attacks

- It may be possible for P_1 to construct a garbled circuit G with 2 different sets of garbled values/keys K, K' such that
 - The keys in K decrypt G to the correct circuit C
 - The keys in K' decrypt G to an incorrect circuit C'

- This can be solved by having P_1 also commit to the keys
Difficulties and Attacks

- Input consistency
 - P_2 may use different inputs y_1, y_2, \ldots in different circuits, in order to get $f(x, y_1), f(x, y_2), \ldots$
 - P_1 may use different inputs x_1, x_2, \ldots in different circuits in order to get $f(x_1, y), f(x_2, y), \ldots$
 - But won’t this be detected by P_2 who gets the output?
 - Not necessarily; it depends on the function
Cut-and-choose on the circuit does not prevent a selective-input attack

Preventing selective-input attacks
- Split each input bit y of P_2 into s random bits $y_1,...,y_s$ such that $y_1 \oplus ... \oplus y_s = y$
- Change the circuit to first compute the XOR of these bits and then the function

Why does this help?
- Each input bit is now random (the correlation between $y_1,...,y_s$ and the actual bit y can be guessed w.p. 2^{-s}
- Thus, any attack on the input bits is not correlated to the actual input
Selective–Input Attacks

- The drawback:
 - Increases the size of the circuit
 - Increases the number of oblivious transfers
 - Need an oblivious transfer for each input bit

- Using randomized encoding of the input, this can be improved, but still costs
Input Consistency

- Forcing P_2 to use the same inputs in every circuit
 - Carry out the oblivious transfers on all circuits at once (also more efficient)

- In the i^{th} oblivious transfer
 - P_1 (sender) inputs (K_0^i, K_1^i) where K_0^i is the vector of 0-keys in ALL circuits on the wire associated with P_2's i^{th} input bit
 - P_2 (receiver) inputs its i^{th} input bit
Input Consistency

- Forcing P_1 to use the same inputs in every circuit
 - Use zero-knowledge – expensive
 - Use cut-and-choose on commitments
- P_1 sends many sets of commitments to its input keys
 - P_1 opens all commitments of opened circuits to show that correctly constructed
 - P_1 opens some commitments of computed circuits to show that it sent consistent keys
Input Consistency

- **Cost:** \(2s^2L\) commitments are needed (s is a statistical security parameter, L is the input length)
 - For \(s = 160\), \(n = 128\), this constitutes 6,553,600 commitments
 - In addition to significant computation (even if just hashing), this involves sending and processing a gigabit of data (if 160-bits is the size of each commitment)

- This was a mistake...
On the importance of tight proofs

- This protocol has a proven error of $2^{-s/17}$
- The number of circuits sent and more is s
- Thus, to obtain an error of 2^{-40}, we need to take $s=680$

This is a huge number of circuits

- It also means that the commitment sets are 20 gigabits)

We conjectured that the error is really $2^{-s/4}$ but are not sure
Efficiency...

- Efficiency means many things
 - Theoretical efficiency: constant number of rounds, sublinear bandwidth, minimal number of oblivious transfers,...
 - Concrete efficiency: actual running time in comparison to other protocols

- Both areas of research are important, but if you are doing concrete efficiency, then be concrete
Implementations are Important

- In [LP07], our aim was to reduce the number of oblivious transfers to a minimum
 - Symmetric operations, like commitments were assumed to be almost free

- In reality: the commitments are the bottleneck
 - They cost much more than the OTs
Solutions – Protocol 2011

- Solution based on cut-and-choose, but using a very different approach
- More oblivious transfers and more exponentiations
 - No commitment sets
 - No selective-input attack is possible so don’t need to split the inputs
 - Proven concrete error of $2^{-0.31s}$
 - Suffices to take $s=128$ for 2^{-40} error
 - Many less circuits – very important!
Consistency Proof

- The keys on the wires associated with P₁’s input are chosen in a special way
 - Let \(r_1, \ldots, r_s \) be random values (one for each circuit)
 - Let \(a_i^0, a_i^1 \) be random values (for the \(i \)th bit of P₁’s input)
 - The keys for wire associated with the \(i \)th bit of P₁’s input in the \(j \)th circuit are \(g^{a_i^0 \cdot r_j}, g^{a_i^1 \cdot r_j} \)

- P₁ sends \(g^{r_1}, \ldots, g^{r_s}, g^{a_1^0}, g^{a_1^1}, \ldots, g^{a_L^0}, g^{a_L^1} \)
 - These are commitments to all of the values on these wires
 - By DDH, the values are hidden
Consistency Proof

- **The proof**
 - Given $g^{r_i}, g^{r_s}, g^{a_1}, g^{a_0}, g^{a_L}, g^{a_L}$ and keys $k_i^1, k_i^2, ..., k_i^s$ prove that there exists a bit $b \in \{0,1\}$ such that

 $$k_i^1 = g^{a_i \cdot r_i}, k_i^2 = g^{a_i \cdot r_2}, ..., k_i^s = g^{a_i \cdot r_s}$$
 - In other words, the key used for the i^{th} bit in all s circuits relates to the same bit (0 or 1)

- **This looks complicated, but…**
 - This is an OR between two “extended Diffie–Hellman tuples”
 - Using Sigma protocols, this can be proven with just $s+18$ exponentiations
 - First combine to one tuple (randomly), then prove OR of two DH tuples
Cut-and-Choose OT

In the previous protocol, cut-and-choose on the circuits is separate from the OT

- This enables P_1 to carry out a selective input attack because P_1 can use different keys in the OT to what are used in the opening

In this protocol, we define cut-and-choose oblivious transfer to intertwine the two
Cut-and-Choose OT

Input:
- The sender has a vector of \(s \) pairs
 - These are the keys for a wire associated with \(P_2 \)'s input in all circuits
- The receiver has a bit
 - This is \(P_2 \)'s input bit for this wire
- The receiver also has a set \(J \) of \(s/2 \) indices

Output:
- The receiver obtains the 1\(^{st}\) or 2\(^{nd}\) value in every pair (as per its input)
- The receiver obtains both values for every index in \(J \)
Using Cut-and-Choose OT

- P_1 sends the garbled circuits and the "commitments" to its own input wires
- P_1 and P_2 run cut-and-choose OT for the input wires of P_2's input
- P_2 asks P_1 to send r_j for every $j \in J$
 - P_2 proves J by sending both values on some wire
 - This enables P_2 to compute all of the values on P_1's input wires in the circuit
 - From the cut-and-choose OT it has all the values on its input wires
 - Thus, this is a full "opening"
Using Cut-and-Choose OT

- The circuit checks and the oblivious transfers are now intertwined.
- Any incorrect value used in the oblivious transfers is either used few times (and so doesn’t affect the majority) or used many times, and will be detected.
- This also enables a much cleaner proof of security and analysis.
 - There aren’t different sources of error.
Background – Oblivious Transfer of [PVW]

- RAND function: \(\text{RAND}(w,x,y,z) = (u,v) = (w^s y^t, x^s z^t) \)
- If \((w,x,y,z)\) is a DH tuple: \(x = w^a, z = y^a\)
 - \(v = x^s z^t = w^a y^at = (w^s y^t)^a\) and so \(v = u^a\)
 - Thus, given \((u,v') = (u,v \cdot m)\) can compute \(m = v/u^a\)
- If \((w,x,y,z)\) are not a DH tuple: \(x = w^a, z = y^b\) (\(a \neq b\))
 - \(v = x^s z^t = w^a y^{bt}\); let \(y = w^c\)
 - Then \(v = w^{a+cbt}, u = w^{s+ct}\)
 - \(as + cbt\) and \(s + ct\) are linearly indep. equations and so for every \(m\), there exist \(s, t\) such that \((u,v') = (u,v \cdot m)\)
[PVW] Oblivious Transfer

- Inputs: $(m_0,m_1), \sigma$
 - Receiver R sends (g_0, g_1, h_0, h_1) that is not a DH tuple $(h_0 = g_0^a, h_1 = g_1^b, a \neq b)$
 - R chooses random r; computes $g = g_\sigma^r, h = h_\sigma^r$
 - R sends (g, h) to S
 - S computes $(u_0, v_0) = \text{RAND}(g_0, g, h_0, h)$
 - S computes $(u_1, v_1) = \text{RAND}(g_1, g, h_1, h)$
 - S sends $(u_0, v_0 \cdot m_0), (u_1, v_1 \cdot m_1)$

- Only one of $(g_0, g, h_0, h), (g_1, g, h_1, h)$ is a Diffie–Hellman tuple
Only one of \((g_0, g, h_0, h), (g_1, g, h_1, h)\) is a Diffie–Hellman tuple

- Recall: \((g_0, g_1, h_0, h_1)\) is not a DH tuple; \(h_0 = g_0^a, h_1 = g_1^b\)
- Thus, for every \((g, h)\), if \(g = g_0^c\) and \(h = h_0^c\), then it cannot be that \(g = g_1^c\) and \(h = h_1^c\)

Security

- By what we have seen, this means that at least one of \(m_0, m_1\) is perfectly hidden
 - The simulator can choose \((g_0, g_1, h_0, h_1)\) as a DH tuple and so can extract both
- By the DDH assumption, the sender also cannot know if \((g, h)\) equals \((g_0^r, h_0^r)\) or \((g_1^r, h_1^r)\)
What prevents R from sending a Diffie-Hellman tuple?

R can prove in ZK that it’s not a DH tuple
 - How can this be done efficiently?

Alternative: R computes \((g_0, g_1, h_0 = g_0^a, h_1 = g_1^{a+1})\)
 - Then, R proves that \((g_0, g_1, h_0, h_1 / g_1)\) is a DH tuple
 - This guarantees that \((g_0, g_1, h_0, h_1)\) is not a DH tuple
Cut-and-Choose OT

- We demonstrate this on two executions
 - Choose 1-out-of-2; same principle for many
- R chooses 2 tuples, one is DH and one is not
- R proves in ZK that 1 of 2 tuples is not DH
 - Use OR of sigma protocols
- R and S run the rest of [PVW] on each tuple
 - The execution for which the tuple is not DH is a regular OT
 - In the other execution, R receives both values, as required
Lessons

- It is possible to improve efficiency using ZK proofs intelligently
 - It’s all about setting up the inputs in a way that is amenable to efficient proving
- Tight security reductions and proofs are crucial when considering concrete efficiency
- Constants are crucial for concrete efficiency
 - We didn’t discuss this too much; except for the protocol of ZK–proving of Jarecki–Shmatikov (there $O(1) = 720$)
There is Much More

- There are many considerations regarding concrete efficiency
 - We often count exponentiations, but:
 - A Paillier and RSA exponentiation is much more expensive than an Elliptic curve exponentiation
 - A pairing exponentiation is like an RSA exponentiation (plain DH is best out of these)
 - Multi-exponentiations of the type g^sh^r cost about 1.33 regular exponentiations
 - This is just one example
Conclusion

- We can compute any function for malicious adversaries with **reasonable** efficiency.
- There is still a long way to go:
 - The blowup of 128 times Yao is problematic.
 - Other solutions requiring $O(1)$ or more exponentiations per gate are also problematic.
- This is currently a very active research area:
 - In 2006, there was nothing, now there are at least 5 different approaches.