Session 3: Secure Computation in the Multi-Party Setting

Benny Pinkas
Bar-Ilan University
Overview

- Secure computation for more than two parties, computing **Boolean** circuits.

- **GMW** (Goldreich–Micali–Wigderson)
 - First, for semi-honest adversaries.
 - Then, general compiler from semi-honest to malicious
 - # rounds depends on circuit depth

- **BMR** (Beaver–Micali–Rogaway)
 - O(1) rounds
The setting

- Parties \(P_1, \ldots, P_n \)
- Inputs \(x_1, \ldots, x_n \) (bits, but can be easily generalized)
- Outputs \(y_1, \ldots, y_n \)

The functionality is described as a Boolean circuit.
- Wlog, uses only XOR (\(+ \)) and AND gates
- NOT(\(x \)) is computed as a \(x + 1 \)
- Wires are ordered so that if wire \(k \) is a function of wires \(i \) and \(j \), then \(i < k \) and \(j < k \).
The setting

- The adversary controls a subset of the parties
 - This subset is defined before the protocol begins (is “non-adaptive”)
 - We will not cover the adaptive case

- Communication
 - Synchronous
 - Private channels between any pair of parties (can be easily implemented using encryption)
Adversarial models

- Semi–honest

- Malicious with no abort
 - GMW: A protocol secure any number of malicious parties

- Malicious with abort
 - GMW: A protocol secure against a minority of malicious parties with abort (will not be discussed here).
Protocol for semi-honest setting

The protocol:

- Each party shares its input bit
- Scan the circuit gate by gate
 - Input values of gate are shared by the parties
 - Run a protocol computing a sharing of the output value of the gate
 - Repeat
- Publish outputs
Protocol for semi-honest setting

The protocol:
- Each party shares its input bit
- The sharing procedure:
 - P_i has input bit x_i
 - It chooses random bits $r_{i,j}$ for all $i \neq j$.
 - Sends bit $r_{i,j}$ to P_j.
 - Sets its own share to $r_{i,i} = x_i + (\sum_{j \neq i} r_{i,j}) \mod 2$
 - Therefore $\sum_{j=1}^{n} r_{i,j} = x_i \mod 2$.
- Now every P_j has n shares, one for each input x_i of each P_i.
Evaluating the circuit

- Scan circuit by the order of wires
- Wire c is a function of wires a, b
- P_i has shares a_i, b_i. Must get share of c_i.

Addition gate:

- P_i computes $c_i = a_i + b_i$.
- Indeed, $c = a + b \pmod{2} = (a_1 + \ldots + a_n) + (b_1 + \ldots + b_n) = (a_1 + b_1) + \ldots + (a_n + b_n) = c_1 + \ldots + c_n$
Evaluating multiplication gates

- \(c = a \cdot b = (a_1 + \ldots + a_n) \cdot (b_1 + \ldots + b_n) = \)
 \[\sum_{i=1}^{n} a_i b_i + \sum_{i \neq j} a_i b_j = \]
 \[\sum_{i=1}^{n} a_i b_i + \sum_{1 \leq i < j \leq n} (a_i b_j + a_j b_i) \]

- \(P_i \) will obtain a share of \(a_i b_i + \sum_{i < j \leq n} (a_i b_j + a_j b_i) \)

- Computing \(a_i b_i \) by \(P_i \) is easy
- What about \(a_i b_j + a_j b_i \)?
- \(P_i \) and \(P_j \) run the following protocol for every \(i < j \).
Evaluating multiplication gates

- Input: \(P_i \) has \(a_i, b_i \), \(P_j \) has \(a_j, b_j \).
- \(P_i \) outputs \(a_i b_j + a_j b_i + s_{i,j} \). \(P_j \) outputs \(s_{i,j} \).
- \(P_j \):
 - Chooses a random \(s_{i,j} \)
 - Computes the four possible outcomes of \(a_i b_j + a_j b_i + s_{i,j} \), depending on the four options for \(P_i \)'s inputs.
 - Sets these values to be its input to a 1-out-of-4 OT
- \(P_i \) is the receiver, with input \(2a_i + b_i \).
Recovering the output bits

- The protocol computes shares of the output wires.

- Each party sends its share of an output wire to the party P_i that should learn that output.

- P_i can then sum the shares, obtain the value and output it.
Recall definition of security for semi–honest setting:

- Simulation – Given input and output, can generate the adversary’s view of a protocol execution.

Suppose that adversary controls the set J of all parties but P_i.

The simulator is given (x_j,y_j) for all $P_j \in J$.
The simulator

- **Shares of input wires:** \(\forall j \in J \) choose
 - a random share \(r_{j,i} \) to be sent from \(P_j \) to \(P_i \),
 - and a random share \(r_{i,j} \) to be sent from \(P_i \) to \(P_j \).

- **Shares of multiplication gate wires:**
 - \(\forall j < i \), choose a random bit as the value learned in the 1-out-of-4 OT.
 - \(\forall j > i \), choose a random \(s_{i,j} \), and set the four inputs of the OT accordingly.

- **Output wire \(y_j \) of \(j \in J \):** set the message received from \(P_i \) as the XOR of \(y_j \) and the shares of that wire held by \(P_j \in J \).
The output of the simulation is distributed identically to the view in the real protocol

- Certainly true for the random shares $r_{i,j}, r_{j,i}$ sent from and to P_i.
- OT for $j<i$: output is random, as in the real protocol.
- OT for $j<i$: input to the OT defined as in the real protocol.
- Output wires: message from P_i distributed as in the real protocol.

QED
Must run an OT for every multiplication gate
- Namely, public key operations per multiplication gate
- Need a communication round between all parties per every multiplication gate

- Can process together a set of multiplication gates if all their input wires are already shared
- Therefore number of rounds is $O(d)$, where d is the depth of the circuit (counting only multiplication gates).
The BMR protocol

- Beaver–Micali–Rogaway
- A multi-party version of Yao’s protocol
- Works in O(1) communication rounds, regardless of the depth of the Boolean circuit.

Two random seeds (garbled values) are set for every wire of the Boolean circuit:
 ◦ Each seed is a concatenation of seeds generated by all players and secretly shared among them.

The parties securely compute together a 4x1 table for every gate (in parallel):
 ◦ Given 0/1 seeds of the input wires, the table reveals the seed of the resulting value of the output wire.
The BMR protocol

- The parties securely compute together a 4x1 table for every gate (in parallel):
 - This is essentially a secure computation of the table
 - But all tables can be computed in parallel. Therefore $O(1)$ rounds.
 - This is the main bottleneck of the BMR protocol.

- Given the tables, and seeds of the input values, it is easy to compute the circuit output.
The malicious case

- What can go wrong with malicious behavior?
 - Using shares other than those defined by the protocol, using arbitrary inputs to the OT protocol and sending wrong shares of output wires...

- We will show a compiler which forces the parties to operate as in the semi–honest model. (For both GMW and BMR.)

- The basic idea:
 - In every step, each P_i proves in zero knowledge that its messages were computed according to the protocol
Zero knowledge (more on this tomorrow)

- Prover P, verifier V, language L
- P proves that $x \in L$ without revealing anything
 - Completeness: V always accepts when $x \in L$, and an honest P and V interact.
 - Soundness: V accepts with negligible probability when $x \notin L$, for any P^*.
 - Computational soundness: only holds when P^* is polynomial-time
- Zero-knowledge:
 - There exists a simulator S such that $S(x)$ is indistinguishable from a real proof execution.
Assume that each P_i runs a deterministic program Π_i. The compiler is the following:

- Each P_i commits to its input x_i by sending $C_i(r_i,x_i)$, where r_i is a random string used for the commitment.
- Let T_i^s be the transcript of P_i at step s, i.e. all messages received and sent by P_i until that step.
- Define the language $L_i = \{T_i^s \text{ s.t. } \exists x_i, r_i \text{ so that all messages sent by } P_i \text{ until step } s \text{ are the output of } \Pi_i \text{ applied to } x_i, r_i \text{ and to all messages received by } P_i \text{ up to that step}\}$
- When sending a message in step s, prove in zero-knowledge that $T_i^s \in L_i$.
Handling randomized protocols

- The previous construction assumes that Pi’s program, Π_i, is deterministic.

- This is not true in the semi-honest protocol we have seen.
 - In particular, the choice of shares, and the sender’s input to the OT, must be random.
 - The compiler must ensure that P_i chooses its random coins independently of the messages received from other parties.
 - This is not ensured by the previous construction.
We will describe the basic issues of a protocol secure against any number of malicious parties, but with no aborts allowed.

Communication model:
- Messages are published on a bulletin board, and can be read by all parties.
- This implements a broadcast, ensuring that all parties receive the same message.
- Broadcast can be easily implemented if a public key infrastructure exists.
- We assume that a PKI does exist.
Input commitment phase:
- Each party commits to its input.

Coin generation phase:
- The parties generate random tapes for each other.
- Initial idea: random tape of P_i is defined as $s_{1,i} \oplus s_{2,i} \oplus \ldots \oplus s_{n,i}$, where $s_{j,i}$ is chosen by P_j.
- But this lets P_n control the outcome 😞

Protocol emulation phase:
- Run the protocol while proving that parties operations comply with their inputs and random tapes.
The required functionality for P_1 is

$$(x, 1^{|x|}, \ldots 1^{|x|}) \rightarrow (r, C_r(x), \ldots C_r(x)),$$

and similarly for each P_i.

It is not sufficient to ask P_i to just broadcast a commitment of its input

- This does not ensure that this is a random commitment for which P_i knows a decommitment.

The protocol is more complex...

It is useful to first design tools that can help in constructing the compiler.
The required functionality is
\[(a, 1^{|a|}, ..., 1^{|a|}) \rightarrow (\lambda, f(a), ..., f(a))\] (all receive the same function of a)

Protocol
- P_1 broadcasts an encryption of f(a)
- For j=2...n, P_1 proves to P_j a zero-knowledge strong proof of knowledge of a value a corresponding to f(a).
- If P_j rejects, it broadcasts the coins it used in the proof.

Output: For j=2...n, if P_j sees a justifiable rejection it aborts, otherwise it outputs f(a).
The required functionality is
\((a, 1^{|a|}, \ldots 1^{|a|}) \rightarrow (\lambda, f(a), \ldots, f(a))\)

Agreement as to whether \(P_1\) misbehaved is reduced to the decision on whether some verifier has justifiably rejected the proof.

If \(P_1\) is honest, then no malicious party can claim that it cheated.
Tool 2: authenticated computation

- The required functionality is
 \((a, b_2, \ldots, b_n) \rightarrow (\lambda, v_2, \ldots, v_n)\), where \(v_j = f(a)\) if \(b_j = h(a)\) and \(v_j = \lambda\) otherwise.

- Protocol:
 - Use the image transmission tool to broadcast \((f(a), h(a))\) to all \(P_j\), \(j = 2\ldots n\).
 - \(P_j\) outputs \(f(a)\) if \(v_j = h(a)\), and \(\lambda\) otherwise.

- Comment: \(P_j\) learns a function \(f(a)\) of \(a\), if it already has the function \(h(a)\) (e.g., if it has a commitment to \(a\)).
Tool 3: multi-party augmented coin-tossing

- The required functionality is $(1^n, \ldots, 1^n) \rightarrow (r, g(r), \ldots, g(r))$.

- Typically we will use it for computing $(1^n, \ldots, 1^n) \rightarrow ((r, s), C_s(r), \ldots, C_s(r))$.

- The challenge: ensuring that P_1’s output is random. We cannot trust P_1 to choose a random output.
Tool 3: multi-party augmented coin-tossing

\[(1^1,\ldots,1^n) \rightarrow ((r,s), C_S(r),\ldots, C_S(r))\].

- **Toss and commit**: \(\forall i, P_i\) chooses \(r_i,s_i\) and uses the image transmission tool to send \(c_i = C_{Si}(r_i)\) to all \(P_j\).
- **Open commits**: \(\forall i \geq 2\), \(P_i\) uses the authenticated computation tool to send \(s_i,r_i\) to all parties that already have \(c_i\).
- If \(P_j\) obtains \(r_i\) agreeing with \(c_i\), it sets \(r_i^j = r_i\) (also, \(r_j^j = r_j\)). Otherwise it aborts.
- If \(P_1\) did not abort, it sets \(r = \oplus_{i=1}^{n} r_i\) sends \(C_S(r)\) to all other parties, and proves that it was constructed correctly.
Tool 3: multi-party augmented coin-tossing (contd.)

- P_1 sends $C_s(r)$ to all other parties, and proves that it was constructed correctly.

- Run the authenticated computation functionality
 - P_1 chooses a random s. Its input to the protocol is $(r_1, s_1, s, \oplus_{j=2}^{n} r_i^1)$
 - P_j’s input is $c_1, \oplus_{j=2}^{n} r_i^j$.
 - If $c_1 = C_{S_1}(r_1)$ and $\oplus_{j=2}^{n} r_i^j = \oplus_{j=2}^{n} r_i^1$, then P_j outputs $C_s(\oplus_{j=1}^{n} r_i) = C_s(r)$. Otherwise it aborts.
 - P_1 outputs r.
The main protocol: Input commitment phase

Protocol:

- P_i chooses random r'_i and uses image transmission functionality to send $c' = C_{r'_i}(x_i)$ to all parties.

- Run augmented coin-tossing protocol s.t. P_i learns (r_i, r''_i) and others learn $c'' = C_{r''_i}(r_i)$.

- Run authenticated computation where P_i has input (x_i, r_i, r'_i, r''_i) and others input (c', c''), and others learn $C_{r_i}(x_i)$ if (c', c'') are the required functions of P_i's input.
The main protocol: coin generation phase

- Each P_i runs the augmented coin tossing protocol where
 - P_i learns (r^i, s^i)
 - The other parties learn $C_{s^i}(r^i)$.
The main protocol: Protocol emulation phase

- The parties use the authenticated computation functionality
 - \((a, b_2, \ldots, b_n) \rightarrow (\lambda, v_2, \ldots, v_n)\), where \(v_j = f(a)\) if \(b_j = h(a)\) and \(v_j = \lambda\) otherwise.

- Suppose that it is \(P_i\)'s turn to send a message
 - Its input is \((x_i, r^i, T_t)\), as well as the coins used for commitments, where \(T_t\) is the sequence of messages exchanged so far.
 - Every other party has input \((C(x_i), C(r^i), T_t)\)
 - \(f(x_i, r^i, T_t)\) is the message \(P_i\) must send
 - It is accepted if \((C(x_i), C(r_i), T)\) agrees with \(x_i, r_i, T\) and the program that is run
Summary

- Can compute any functionality securely in presence of semi-honest adversaries
- Protocol is efficient enough for use, for circuits that are not too large
- Recommendation: read full proof (Goldreich’s book).