Session 2: The Yao Construction and its Proof of Security

Yehuda Lindell
Bar-Ilan University
Yao’s Protocol

- Protocol for general secure two-party computation
 - Constant number of rounds
 - Secure for semi-honest adversaries
 - Many applications of the methodology beyond secure computation

- General secure computation
 - Can be used to securely compute any functionality
 - Based on the **Boolean circuit** for computing the function
Outline

- **Garbled circuit**
 - An encrypted circuit together with a pair of keys \((k_0, k_1)\) for every input wire so that given one key on every wire:
 - It is possible to compute the output (based on the input determined by the key provided on every wire)
 - It is not possible to learn anything else

- **Oblivious transfer**
 - Sender has \(x_0, x_1\); receiver has \(b\)
 - Receiver obtains \(x_b\) only
 - Sender learns nothing
Outline

- Yao’s protocol
 - Party P₁ constructs a **garbled circuit**
 - P₁ sends P₂ the keys associated with its input on its own input wires
 - P₁ sends only the keys so P₂ doesn’t know what the actual input is
 - P₁ and P₂ use oblivious transfer so that for every one of P₂’s input wires:
 - P₂ obtains the correct key associated with its input
 - P₁ learns nothing about P₂’s input
 - P₂ computes the circuit and receives the output, and sends it back to P₁
Oblivious Transfer – Background

- Trapdoor permutation (I,D,F,F⁻¹)
 - I: samples a function f and trapdoor t in the family
 - D(f): uniformly samples a value in the domain of f
 - F(f,x): computes f(x)
 - F⁻¹(t,y): computes f⁻¹(y)
 - Hard to invert a random y, given f (but not t)

- Enhanced trapdoor permutations
 - Hard to invert y, even given the random coins used to sample y (using D)
Oblivious Transfer – Background

- **Hard-core predicate B**
 - Given $y=f(x)$, can guess $B(x)$ with probability only negligibly greater than $\frac{1}{2}$
 - Equivalently, given $y=f(x)$, the bit $B(x)$ is pseudorandom
Oblivious Transfer Protocol

- **Sender’s input:** \((z_0, z_1)\); receiver’s input \(b\)
- **Sender’s first message:**
 - Sender chooses \((f, t)\) using sampling algorithm \(I\)
 - Sender sends \(f\) to receiver
- **Receiver’s first message:**
 - Receiver chooses \(x_b\) and computes \(y_b = f(x_b)\)
 - Receiver chooses random \(y_{1-b}\)
 - Receiver sends \((y_0, y_1)\) to sender
- **Sender’s second message:**
 - Sender computes \((x_0, x_1)\) by inverting
 - Sender computes \(a_i = z_i \oplus B(x_i)\)
 - Sender sends \((a_0, a_1)\) to receiver
- **Receiver outputs** \(z_b = a_b \oplus x_b\)
Oblivious Transfer Protocol

\[S(z_0, z_1) \]

Choose \((f, t)\)

\[x_0 = f^{-1}(y_0) \]
\[a_0 = z_0 \oplus B(x_0) \]

\[x_1 = f^{-1}(y_1) \]
\[a_1 = z_1 \oplus B(x_1) \]

\[R(b) \]

Choose \(b\)

Choose \(x_b\), compute \(y_b = f(x_b)\)

Choose \(y_{1-b}\)

Output \(z_b = a_b \oplus B(x_b)\)
Security – P₁ Corrupted

- Simulator is given \((z₀,z₁)\); there is no output
 - SIM generates \((f,t)\)
 - SIM chooses random \(y₀, y₁\) using \(D(f)\)
 - SIM computes \(a₀, a₁\) as in sender’s instructions

- The transcript is exactly like a real protocol execution
 - Choosing \(x_b\) using \(D(f)\) and computing \(y_b = f(x_b)\) is identical to choosing \(y_b\) using \(D(f)\)
Security – P₂ Corrupted

- Simulator is given \((b, z_b)\)
 - SIM generates \((f, t)\)
 - SIM chooses random \(x_b, y_{1-b}\) using \(D(f)\)
 - SIM computes \(y_b = f(x_b)\)
 - SIM computes \(a_b = B(x_b) \oplus z_b\)
 - SIM chooses \(a_{1-b}\) at random

- The transcript is indistinguishable from a real execution
 - By the hard-core property of \(B\) and the enhancement property of TDP, \(B(x_{1-b})\) is indistinguishable from random
A Garbled Circuit

- For the entire circuit, assign random values/keys to each wire (key k_0 for 0, key k_1 for 1)
- Encrypt each gate, so that given one key for each input wire, can compute the appropriate key on the output wire
An AND Gate

<table>
<thead>
<tr>
<th>u</th>
<th>v</th>
<th>w</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
An AND Gate with Garbled Values

\[
\begin{array}{c|c|c}
 u & v & w \\
\hline
 k_0^u & k_0^v & k_0^w \\
 k_1^u & k_1^v & k_0^w \\
 k_1^u & k_0^v & k_0^w \\
 k_1^u & k_1^v & k_1^w \\
\end{array}
\]
A Garbled AND Gate

<table>
<thead>
<tr>
<th>U</th>
<th>V</th>
<th>W</th>
</tr>
</thead>
<tbody>
<tr>
<td>k^0_u</td>
<td>k^0_v</td>
<td>$E_{k^0_u} (E_{k^1_v} (k^0_w))$</td>
</tr>
<tr>
<td>k^0_u</td>
<td>k^1_v</td>
<td>$E_{k^0_u} (E_{k^0_v} (k^0_w))$</td>
</tr>
<tr>
<td>k^1_u</td>
<td>k^0_v</td>
<td>$E_{k^1_u} (E_{k^0_v} (k^0_w))$</td>
</tr>
<tr>
<td>k^1_u</td>
<td>k^1_v</td>
<td>$E_{k^1_u} (E_{k^1_v} (k^1_w))$</td>
</tr>
</tbody>
</table>
A Garbled AND Gate

- The actual garbled gate

\[E_{k_u^1} (E_{k_v^0} (k_w^0)) \]
\[E_{k_u^0} (E_{k_v^1} (k_w^0)) \]
\[E_{k_u^1} (E_{k_v^1} (k_w^1)) \]
\[E_{k_u^0} (E_{k_v^0} (k_w^1)) \]

- Given \(k_u^0 \) and \(k_v^1 \) can obtain \(k_w^0 \) only
- Furthermore, since the table is permuted, the party has no idea if it obtained the 0 or 1 key
Output Translation

- If the gate is an output gate, need to provide the “decryption” of the output wire
- Output translation table

\[
\begin{align*}
& [(0, k_0^w), (1, k_1^w)] \\
& k_0^u \quad k_1^u \quad k_0^v \quad k_1^v \\
& u \quad v
\end{align*}
\]
Constructing a Garbled Circuit

- **Given a Boolean circuit**
 - Assign garbled values to all wires
 - Construct garbled gates using the garbled values

- **Central property:**
 - Given a set of garbled values, one for each input wire, can compute the entire circuit, and obtain garbled values for the output wires
 - Given a translation table for the output wires, can obtain output
 - But, nothing but the output is learned!
An Example Circuit
(input wires $P_1 = d,a$; $P_2 = b,e$)

\[
\left(0, k_f^0 \right), \left(1, k_f^1 \right) \quad \left(0, k_g^0 \right), \left(1, k_g^1 \right)
\]

```
| $E_{k_d^0} (E_{k_c^0} (k_f^0))$ |
| $E_{k_d^0} (E_{k_c^1} (k_f^0))$ |
| $E_{k_d^1} (E_{k_c^0} (k_f^0))$ |
| $E_{k_d^1} (E_{k_c^1} (k_f^0))$ |

AND

```

```
| $E_{k_d^0} (E_{k_c^0} (k_f^0))$ |
| $E_{k_d^0} (E_{k_c^1} (k_f^0))$ |
| $E_{k_d^1} (E_{k_c^0} (k_f^0))$ |
| $E_{k_d^1} (E_{k_c^1} (k_f^0))$ |

AND

```

```
| $E_{k_d^0} (E_{k_c^0} (k_g^0))$ |
| $E_{k_d^0} (E_{k_c^1} (k_g^0))$ |
| $E_{k_d^1} (E_{k_c^0} (k_g^0))$ |
| $E_{k_d^1} (E_{k_c^1} (k_g^0))$ |

OR

```

```
| $E_{k_d^0} (E_{k_c^0} (k_g^0))$ |
| $E_{k_d^0} (E_{k_c^1} (k_g^0))$ |
| $E_{k_d^1} (E_{k_c^0} (k_g^0))$ |
| $E_{k_d^1} (E_{k_c^1} (k_g^0))$ |
```
Computing a Garbled Circuit

- How does the party computing the circuit know which is the “correct” entry
 - It has one key on each wire, but symmetric encryption may decrypt “correctly” even with incorrect keys

- Two possibilities (actually many…)
 - Use encryption based on a PRF with redundant zeroes; only correct keys give redundant block
 - Add a bit to signal which ciphertext to decrypt
Computing a Garbled Circuit

- **Option 1:**
 - Encryption: $E_K(m) = [r, F_K(r) \oplus (m||0^n)]$
 - By pseudorandomness of F, probability of obtaining 0^n with an incorrect K is negligible

- **Option 2:**
 - For every wire, choose a random signal bit together with the keys
Computing a Garbled Circuit

- The actual garbled gate

\[
\begin{align*}
(0,0) & \rightarrow E_{k_u^1} (E_{k_v^0} (k_{w}^0 || 1)) \\
(1,1) & \rightarrow E_{k_u^0} (E_{k_v^1} (k_{w}^0 || 1)) \\
(0,1) & \rightarrow E_{k_u^1} (E_{k_v^1} (k_{w}^1 || 0)) \\
(1,0) & \rightarrow E_{k_u^0} (E_{k_v^0} (k_{w}^0 || 1))
\end{align*}
\]

- Advantage

 ◦ Computing the circuit requires just two decryptions per gate (rather than an average of 5)
Double-Encryption Security

- Need to formally prove that given 4 encryptions of a garbled gate and only 2 keys
 - Nothing is learned beyond one output
- Actually, in order to simulate the protocol, we need something stronger
- Notation:
 - Double encryption: $\overline{E}(k_u, k_v, m) = E_{k_u}(E_{k_v}(m))$
 - Oracle: $\overline{E}(:, k_v, :)$
Double-Encryption Security

\[\text{Expt}^{\text{double}}_{\mathcal{A}}(n, \sigma) \]

1. The adversary \(\mathcal{A} \) is invoked upon input \(1^n \) and outputs two keys \(k_0 \) and \(k_1 \) of length \(n \) and two triples of messages \((x_0, y_0, z_0)\) and \((x_1, y_1, z_1)\) where all messages are of the same length.
2. Two keys \(k'_0, k'_1 \leftarrow G(1^n) \) are chosen for the encryption scheme.
3. \(\mathcal{A} \) is given the challenge ciphertext \(\bar{E}(k_0, k'_1, x_\sigma), \bar{E}(k'_0, k_1, y_\sigma), \bar{E}(k'_0, k'_1, z_\sigma) \) as well as oracle access to \(\bar{E}(\cdot, k'_1, \cdot) \) and \(\bar{E}(k'_0, \cdot, \cdot) \)
4. \(\mathcal{A} \) outputs a bit \(b \) and this is taken as the output of the experiment.
Yao’s Protocol

- **Input:** x and y of length n
- P₁ generates a garbled circuit G(C)
 - k₀₀, k₀¹ are the keys on wire w₁
 - Let w₁,…,wₙ be the input wires of P₁ and wₙ₊₁,…,w₂ₙ be the input wires of P₂
- P₁ sends P₂ the strings k₁ₓ₁,..., kₙₓₙ
- P₁ and P₂ run n OTs in parallel
 - P₁ inputs kₙ₊ᵢ₀, kₙ₊ᵢ¹
 - P₂ inputs yᵢ
- Given all keys, P₂ computes G(C) and obtains C(x,y)
 - P₂ sends result to P₁
The Example Circuit
(input wires $P_1 = d, a; P_2 = b, e$)

\[
\left(0, k^0_f \right), \left(1, k^1_f \right) \quad \left(0, k^0_g \right), \left(1, k^1_g \right)
\]

AND

\[
E_{k^0_d} \left(E_{k^0_c} \left(k^0_f \right) \right) \\
E_{k^0_d} \left(E_{k^1_c} \left(k^0_f \right) \right) \\
E_{k^1_d} \left(E_{k^0_c} \left(k^0_f \right) \right) \\
E_{k^1_d} \left(E_{k^1_c} \left(k^1_f \right) \right)
\]

OR

\[
E_{k^0_g} \left(E_{k^0_c} \left(k^0_f \right) \right) \\
E_{k^0_g} \left(E_{k^1_c} \left(k^1_f \right) \right) \\
E_{k^1_g} \left(E_{k^0_c} \left(k^0_f \right) \right) \\
E_{k^1_g} \left(E_{k^1_c} \left(k^1_f \right) \right)
\]

AND

\[
E_{k^0_a} \left(E_{k^0_b} \left(k^0_c \right) \right) \\
E_{k^0_a} \left(E_{k^1_b} \left(k^0_c \right) \right) \\
E_{k^1_a} \left(E_{k^0_b} \left(k^0_c \right) \right) \\
E_{k^1_a} \left(E_{k^1_b} \left(k^1_c \right) \right)
\]

OT
Proof of Security – P_1 Corrupted

- Party P_1’s view consists only of the messages it receives in the oblivious transfers.
- In the OT-hybrid model, P_1 receives no messages in the oblivious transfers.
- Simulation:
 - Generate an empty transcript.
More difficult case

- Need to construct a fake garbled circuit $G(C')$ that looks indistinguishable to $G(C)$
- Simulated view contains keys to input wires and $G(C')$
- $G(C')$ together with the keys computes to $f(x,y)$
- Simulator doesn’t know x, so cannot generate a real garbled circuit
Proof of Security – P2 Corrupted

- Simulator
 - Given y and z = f(x,y), construct a fake garbled circuit G'(C) that always outputs z
 - Do this by choosing wire keys as usual, but encrypting the same output key in all ciphertexts
 \[\text{E}_{k_u^1}(\text{E}_{k_v^0}(k_w^0)) \quad \text{E}_{k_u^1}(\text{E}_{k_v^1}(k_w^0)) \]
 \[\text{E}_{k_u^0}(\text{E}_{k_v^1}(k_w^0)) \quad \text{E}_{k_u^0}(\text{E}_{k_v^0}(k_w^0)) \]
 - This ensures that no matter the input, the same known garbled values on the output wires are received
Simulator (continued)

- Simulation of output translation tables
 - Let k,k' be the keys on the i^{th} output wire; let k be the key encrypted in the preceding gate
 - If $z_i = 0$, write $[(0,k),(1,k')]$
 - If $z_i = 1$, write $[(0,k'),(1,k)]$

- Simulation of input keys phase
 - Input wires associated with P_1's input: send any one of the two keys on the wire
 - Input wires associated with P_2's input: simulate output of OT to be any one of the two keys on the wire
Proof of Security – P_2 Corrupted

- Need to prove that the simulation is indistinguishable from the real

- First step – modify simulator as follows
 - Given x and y (just for the sake of the proof), label all keys on the wires as **active** or **inactive**
 - **active**: key is obtained on this wire upon inputs (x, y)
 - **inactive**: key is **not** obtained on wire upon inputs (x, y)
 - The single key to be encrypted in each gate is the **active** one

- This simulation is identical
Proof of Security – P_2 Corrupted

- Proven by a hybrid argument
 - Consider a garbled circuit G_L(C) for which:
 - The first L gates are generated as in the (alternative) simulation
 - The rest of the gates are generated honestly
- Claim: G_{L-1}(C) is indistinguishable from G_L(C)
- Proof:
 - Difference is in L^{th} gate
 - Intuition: use indistinguishability of encryptions to say that cannot distinguish real garbled gate from one where same key is encrypted
Proof of Security – P_2 Corrupted

- **Observation – L^{th} gate**
 - The encryption under both active keys is identical in both cases
 - The difference is what the inactive keys encrypt (only the next active key, or also the inactive)
 - The triple in the experiment are all encryptions under inactive keys

- **The problem**
 - The inactive keys in this gate may appear in other gates as well
 - Use oracles to generate rest...
The Example Circuit

(input wires $P_1 = d, a; P_2 = b, e$)

\[
[(0, k_f^0), (1, k_f^1)] \quad [(0, k_g^0), (1, k_g^1)]
\]

\[
E_{k_d^0}(E_{k_c^0}(k_{f}^0)) \quad E_{k_d^0}(E_{k_c^0}(k_{f}^1))
\]

\[
E_{k_d^1}(E_{k_c^0}(k_{f}^0)) \quad E_{k_d^1}(E_{k_c^0}(k_{f}^1))
\]

\[
E_{k_c^0}(E_{k_c^0}(k_{f}^0)) \quad E_{k_c^0}(E_{k_c^0}(k_{f}^1))
\]

\[
E_{k_c^1}(E_{k_c^0}(k_{f}^0)) \quad E_{k_c^1}(E_{k_c^0}(k_{f}^1))
\]

\[
E_{k_c^0}(E_{k_c^0}(k_{g}^0)) \quad E_{k_c^0}(E_{k_c^0}(k_{g}^1))
\]

\[
E_{k_c^1}(E_{k_c^0}(k_{g}^0)) \quad E_{k_c^1}(E_{k_c^0}(k_{g}^1))
\]
Simulator’s Circuit (Output 01)

\[
[(0, k^0_f), (1, k^1_f)] \quad [(0, k^0_g), (1, k^1_g)]
\]
Inactive Keys
Input (da=01, be=10), Output (fg=01)

\[
\left[\left(0, k_0^\ell\right), \left(1, k_1^\ell\right)\right] \quad \left[\left(0, k_0^g\right), \left(1, k_1^g\right)\right]
\]
Inactive Keys

Input (da=01, be=10), Output (fg=01)

\[
\left[(0, k^0_f), (1, k^1_f) \right] \quad \left[(0, k^0_g), (1, k^1_g) \right]
\]

Diagram:

- AND gates with inputs and outputs labeled with keys.
- Example: \(E_{k^0_d} \) and \(E_{k^1_c} \) for different keys.

Secrecy and security implications discussed.
Alternative Simulator
(Encrypt Active Keys Only)

\[
\left[(0, k_f^0), (1, k_f^1)\right], \quad \left[(0, k_g^0), (1, k_g^1)\right]
\]

Note change in encrypted key
Hybrid on OR Gate – Simulated OR

\[[(0, k^0_f), (1, k^1_f)] \]
\[[(0, k^0_g), (1, k^1_g)] \]
Hybrid on OR Gate – Real OR

\[
\begin{align*}
\text{REAL:} & \quad \left(0, k_f^0 \right), \left(1, k_f^1 \right) \\
\text{SIM:} & \quad \left(0, k_g^0 \right), \left(1, k_g^1 \right)
\end{align*}
\]
What’s the Difference

- In the simulated OR case, the inactive key k_c^0 encrypts the key k_g^1
- In the real OR case, the inactive key k_c^0 encrypts the key k_g^0
- Indistinguishability follows from the indistinguishability of encryptions under the inactive key k_c^0
othing Indistinguishability

Follows from the indistinguishability of encryptions under the inactive key k_c^0

The good news
- Key k_c^0 is not encrypted anywhere (as data) because prior gates are simulated

The bad news
- The key k_c^0 needs to be used to construct the real AND gate for the hybrid

The solution
- The special double-encryption CPA game
Double-Encryption Security

The adversary A is invoked upon input 1^n and outputs two keys k_0 and k_1 of length n and two triples of messages (x_0, y_0, z_0) and (x_1, y_1, z_1) where all messages are of the same length.

Two keys $k'_0, k'_1 \leftarrow G(1^n)$ are chosen for the encryption scheme.

A is given the challenge ciphertext $\{E(k_0, k'_1, x_\sigma), E(k'_0, k_1, y_\sigma), E(k'_0, k'_1, z_\sigma)\}$ as well as oracle access to $E(\cdot, k'_1, \cdot)$ and $E(k'_0, \cdot, \cdot)$.

A outputs a bit b and this is taken as the output of the experiment.

- k_0, k_1 (k_c^1, k_e^0) are active keys
- k'_0, k'_1 (k_c^0, k_e^1) are inactive keys
- Can use oracle to generate the REAL AND gate
Proof of Security – \(P_2 \) Corrupted

Since each gate-replacement is indistinguishable, using a hybrid argument we have that the distributions are indistinguishable.

QED
2–4 rounds (depending on OT and if both or one party receives output)
8|C| oblivious transfers
8|C| symmetric encryptions to generate circuit and 2|C| to compute it (using the signal bit)
For circuit of 33,000 gates:
- Between 7 and 14 seconds
- Between 503 and 3162 Kbytes
 (depends on encryption used)
Assume that the OT is secure for malicious adv:

- A corrupted P_1 cannot learn **anything** (it receives no messages in the protocol, in the hybrid–OT model)
 - Thus, we have **privacy**
- We can prove **full security** for the case of a corrupted P_2

This can be useful, but…

- Be warned that this doesn’t compose with anything
- E.g., consider P_1 that builds circuit so that if P_2’s first bit is 0, the circuit doesn’t decrypt
 - If P_1 can detect this in the real world, privacy is lost
Summary

Can compute any functionality securely in presence of semi-honest adversaries

Protocol is efficient enough for use, for circuits that are not too large

Recommendation: read full proof