Efficient Secure Computation with an Honest Majority

Yuval Ishai
Technion
MPC with an Honest Majority

Several potential advantages
- Unconditional security
- Guaranteed output and fairness
- Universally composable security
- This talk: efficiency

Main feasibility results
- Perfect security with $t < n/3$ [BGW88, CCD88]
- Statistical security with $t < n/2$ (assuming broadcast) [RB89]

Goal: minimize complexity
- Communication
- Computation
What can we hope for?

Communication
- Match insecure communication complexity?
 - Possible (in theory, up to poly(k) overhead) using FHE
 - Big open question in information-theoretic setting
- A more realistic goal
 - Allow communication for each gate
 - Minimize amortized cost as a function of n
 - Ignore additive terms that do not depend on circuit size
 - Ideally, $O(1)$ bits per gate

Computation
- $O(1)$ computation per gate?
What can we get?

- Essentially what we could hope for
 - At most polylog(n) overhead
 - Work per party decreases with number of parties!
 - Small price in resilience
 - O(depth) rounds
 - or O(1) rounds with poly(k) overhead and comp. security

- This talk: several simplifying assumptions
 - Inputs originate from a constant number of “clients”
 - Security with abort
 - Statistical security against static malicious adversary
 - Small fractional resilience
 - Broadcast

- Assumptions can be removed
The model

- \(m \geq 2 \) clients, \(n \) servers
 - Only clients have inputs and outputs
 - Assume \(m = O(1) \) in most of this talk
 - Motivated by next talk

![Diagram of model with cloud representing servers and multiple clients.]
The model

- Synchronous secure point-to-point channels + broadcast
 - Servers only talk to clients

- Malicious adversary corrupting:
 - at most cn servers for some constant $0 < c < 1/2$
 - any subset of the m clients

- Statistical security with abort
Functionality represented by a circuit C
- Arithmetic circuit over F (with + and \times gates)
- Assume $n \ll |C|$, $\text{depth}(C) \ll |C|$
- Ignore low-order additive terms

Goal 1: Minimize communication
- Initial protocols $[BGW88, CCD88]$: $|C| \cdot \text{poly}(n)$
- Best unconditional protocols (this talk): $|C| \cdot O(1)$
- Using FHE: $|\text{input}| + \text{poly}(k) \cdot |\text{output}|$

Goal 2: Minimize computation
- Best one can hope for: $|C| \cdot \text{field ops.}$
- Best known (this talk): $|C| \cdot O(\log n)$
 - Assumes large F ($|F| > 2^k$)
 - Polylog(n) overhead possible for any F
Some historical credits

- **Franklin–Yung 92**
 - Run several parallel instances of BGW roughly for price of one
 - Small penalty in security threshold
 - Reduces complexity of BGW for some tasks

- **Hirt–Maurer 01, Cramer–Damgård–Nielsen 01, Damgård–Nielsen 06**
 - Improved overhead of MPC with optimal resilience

- **Damgård–I 06, I–Prabhakaran–Sahai 09**
 - Extend scope of Franklin–Yung technique to general tasks
 - Optimize computational complexity using technique from Groth 09
Some historical credits

- **Damgård–I–Kroigaard–Nielsen–Smith 08**
 efficiency with many clients, boosting resilience using technique of Bracha 87

- **Beerliova–Hirt 08**, **Damgård–I–Kroigaard 10**
 perfect security

- **Beaver–Micali–Rogaway 90**, **Damgård–I 05**
 constant-round protocols

- **Chen–Cramer 06**
 using constant-size fields
Starting point: BGW

- Secret-share inputs
- Evaluate C on shares
 - Non-interactive addition
 - Interactive multiplication
- Recover outputs

- Secure with \(t < n/2 \) (semi-honest) or \(t < n/3 \) (malicious)
- Complexity: \(|C| \cdot O(n^2)\) (semi-honest)
 \(|C| \cdot \text{poly}(n)\) (malicious)
Sources of overhead

- Each wire value is split into n shares
 - Use “packed secret sharing” to amortize cost

- Multiplication involves communication between each pair of servers
 - Reveal blinded product to a single client

- Expensive consistency checks
 - Efficient batch verification
Share packing

- Handle block of \(w \) secrets for price of one.
- Security threshold degrades from \(d \) to \(d-w+1 \)
- \(w=n/10 \) \(\Rightarrow \) \(\Omega(n) \) savings for small security loss
- Compare with error correcting codes

Denote shared block by \([x_1, \ldots, x_w]_d\)
YES: evaluate a circuit on multiple inputs in parallel

NO: evaluate a circuit on a single input

3 inputs

5 blocks
Warmup: Semi–honest, depth 1

Client A

Client B

Client C

- Extends to constant-depth circuits
- Still 2 rounds, \(t = \Omega(n) \)

A→S: \(p_A = [a_1, a_2, a_2]_d \)
\(q_A = [a_1, a_1, a_2]_d \)
\(z_A = [0, 0, 0]_2d \)

B→S: \(p_B = [b_1, b_2, b_1]_d \)
\(q_B = [b_2, b_1, b_2]_d \)
\(z_B = [0, 0, 0]_2d \)

S→C: \(p_A p_B + z_A + z_B \)
\(q_A + q_B \)
Semi–honest, any depth

- Assume circuit is composed of layers 1,...,H.
- Clients share inputs into $[\text{left}^1]_d$ and $[\text{right}^1]_d$
- For $h=1$ to $H-1$:
 - Clients generate random blocks $[r]_{2d}$, $[\text{left}_r]_d$ and $[\text{right}_r]_d$ replicated according to structure of layer $h+1$
 - Servers send masked output shares of layer h to Client A:
 $$[y]_{2d} = [\text{left}^h]_d*[\text{right}^h]_d + [r]_{2d} \ (\ast \in \{x,+,-\})$$
 - A decodes, rearranges and reshares y into $[\text{left}_y]_d$, $[\text{right}_y]_d$
 - Servers let
 - $[\text{left}^{h+1}]_d = [\text{left}_y]_d - [\text{left}_r]_d$
 - $[\text{right}^{h+1}]_d = [\text{right}_y]_d - [\text{right}_r]_d$

- Servers reveal output shares
 $$[\text{left}^H]_d*[\text{right}^H]_d + [0]_{2d}$$
Example

Secure Computation and Efficiency
Bar-Ilan University, Israel 2011
Malicious model

- Need to protect against $t = \Omega(n)$ malicious servers and $t’ < m$ malicious clients.
- Malicious servers handled via error correction
 - Valid shares form a good error-correcting code
 - Error detection sufficient for security with abort
- Malicious clients handled via efficient VSS procedures (coming up)
Efficient statistical VSS

- Recall: only shoot for security with abort
- Two types of verification procedures
 - Verify that shares lie in a linear space
 - E.g., degree-d polynomials
 - Verify that shared blocks satisfy a given replication pattern
 - E.g., \([r_1, r_1, r_2, r_1] [r_2, r_3, r_1, r_2]\)
- Cost is amortized over multiple instances
Verifying membership in a linear space

- Suppose Client A distributed a vector v between servers.
 - S_i holds the i-th entry of v
 - Can be generalized to an arbitrary partition of entries
- **Goal**: Prove in zero-knowledge to Client B that v is in some (publicly known) linear space L.
- **Protocol**:
 - A distributes a random $u \in rL$
 - B picks and broadcasts $c \in rF$
 - Servers jointly send $w = cv + u$ to B
 - B checks that $w \in L$
- **ZK**: w is a random vector in L
- **Soundness** (static corruption):
 - consider messages from honest servers
 - $cv + u, c'v + u \in L \Rightarrow (c - c')v \in L \Rightarrow v \in L$
 - soundness error $\leq 1/|F|$
Amortizing cost

- Can be jointly generated by clients
- Can be pseudorandom (\(\varepsilon\)-biased)

\[
\begin{array}{cccc}
\text{c}_1 & \times & v_1 \\
\text{c}_2 & \times & v_2 \\
\text{c}_3 & \times & v_3 \\
\text{c}_4 & \times & v_4 \\
\text{c}_5 & \times & v_5 \\
+ & & u \\
\end{array}
\]

\[w \in L?\]
Verifying replication pattern

secret

inner product

public

\[
\begin{array}{cccc}
\text{a b c d} & \text{e f g h} \\
\text{r_1 r_2 s_1 s_2} & \text{r_3 s_3 r_4 r_5} \\
\text{r_2 r_3 s_2 s_3} & \text{r_4 s_1 r_5 r_1}
\end{array}
\]
Asymptotic efficiency

Communication
- $O(|C|)$ field elements ($|F| > n$) + “low order terms”
- Low order terms include:
 - Additive term of $O(\text{depth} \cdot n)$ for layered circuits
 - depth \Rightarrow # “communicating layer pairs” for general circuits
 - Multiply by $k/\log|F|$ for small fields
 ($k = \text{statistical security parameter}$)

Computation
- Communication $\times O(\log n)$
 - Uses FFT for polynomial operations
 - Multiply by $k/\log|F|$ for small fields
Goal: small fractional resilience \Rightarrow nearly optimal resilience
- without increasing asymptotic complexity!

Solution: server virtualization
- Example: $0.01n$-secure $\Pi \Rightarrow 0.33n$-secure Π'
- Pick n committees of servers such that
 - Each committee is of size $s=O(1)$
 - If $0.33n$ servers are corrupted, then $>99\%$ of the committees have $<s/3$ corrupted members
- Choose committees at random, or use explicit constructions

Π' uses s–party BGW to simulate each server in Π by a committee
- Overhead $\text{poly}(s)=O(1)$
Using constant-size fields

- Consider a boolean circuit C with $|C| \gg$ depth
- Previous protocol requires $|F| > n$
 - $O(|C| \log n)$ bits of communication
- Can we get rid of the $\log n$ term?
- Yes, using algebraic-geometric codes
 - Field size independent of n
 - Small fractional loss of resilience
 - Asymptotically optimal protocols for natural classes of circuits
Other extensions

- Many clients
 - Previous protocol required generating secret blocks
 - Easy to implement by summing blocks generated by all clients
 - Overhead can be amortized if only a constant fraction of clients are corrupted
 - Requires converting circuit into a “repetitive” form
 - Gives protocols with polylog(n) overhead in standard n-party setting with \(t = \Omega(n) \).

- Perfect security
 - Use efficient variant of BGW VSS with share packing
Constant-round protocols

- **BMR90: Constant-round version of BGW**
 - Uses garbled circuit technique
 - Black-box use of PRG in semi-honest model (Benny’s talk)
 - Non-black-box use of PRG in malicious model
 - Required for zero-knowledge proofs involving “cryptographic relations”
 - In BMR paper: distributed ZK proofs of consistency of seed with PRG output

- **DI05: Black-box use of PRG in malicious model**
 - Uses threshold symmetric encryption
Conclusions

- An honest majority can be useful
 - Unconditional, composable security
 - Fairness
 - Efficiency

- Open efficiency questions
 - Break circuit size communication barrier for unconditional security
 - Constant computational overhead
 - Improve additive terms
 - Better constant-round protocols
 - $O(1)$ PRG invocations per gate?
 - Practical efficiency