1. Describe an algorithm that given a basis \(b_1, \ldots, b_n \in \mathbb{Q}^n \) of a lattice and a point \(t \in \mathbb{Q}^n \), finds a point \(x \in L(b_1, \ldots, b_n) \) such that \(\| x - t \|^2 \leq \frac{1}{2}(\| \tilde{b}_1 \|^2 + \cdots + \| \tilde{b}_n \|^2) \).

2. Show that an LLL reduced basis \(b_1, \ldots, b_n \) of a lattice \(\Lambda \) satisfies the following properties.

 (a) \(\| b_1 \| \leq 2^{(n-1)/4(\det \Lambda)^{1/n}} \)

 (b) For any \(1 \leq i \leq n \), \(\| b_i \| \leq 2^{(i-1)/2} \| \tilde{b}_i \| \)

 (c) \(\Pi \| b_i \| \leq 2^{n(n-1)/4} \det \Lambda \)

 Remark: the quantity \(\Pi \| b_i \| / \det \Lambda \) is known as the orthogonality defect of the basis; to see why, notice that it is 1 iff the basis is orthogonal; it can never be less than one by Hadamard’s inequality.

 (d) For any \(1 \leq i \leq j \leq n \), \(\| b_i \| \leq 2^{(j-1)/2} \| \tilde{b}_j \| \)

 (e) For any \(1 \leq i \leq n \), \(\lambda_i(\Lambda) \leq 2^{(i-1)/2} \| \tilde{b}_i \| \)

 (f) For any \(1 \leq i \leq n \), \(\lambda_i(\Lambda) \geq 2^{-(n-1)/2} \| b_i \| \)

 (g) For \(1 \leq i \leq n \) consider \(H = \text{span}\{b_1, \ldots, b_{i-1}, b_{i+1}, \ldots, b_n\} \). Show that \(2^{-n(n-1)/4} \| b_i \| \leq \text{dist}(H, b_i) \leq \| b_i \| \). Hint: use (c)

3. Show an algorithm that solves SVP exactly in time \(2^{O(n^2)} \cdot \text{poly}(D) \) where \(n \) is the rank of the lattice and \(D \) is the input size. Hint: show that if we represent the shortest vector in an LLL-reduced basis, none of the coefficients can be larger than \(2^c n \) for some \(c \).

4. (a) Let \(S \in \mathbb{Z}^{m \times m} \) be a basis for \(\Lambda^⊥(A) \) (i.e., \(AS = 0 \) and \(S \) is nonsingular over the integers), and suppose that the columns of \(A \) generate all of \(\mathbb{Z}_q^m \) (i.e., \(A \cdot \mathbb{Z}^m = \mathbb{Z}_q^m \)). Let \(A' = [A|A_1] \) be an arbitrary extension of \(A \). Show how, given \(S \) and \(A' \), to efficiently compute a basis \(T \) of \(\Lambda^⊥(A') \) so that \(\max \| \tilde{t}_i \| = \max \| \tilde{s}_i \| \) (where \(s_i, t_j \) are the \(i \)th columns of \(S, T \) respectively, and the tilde notation \(\tilde{\cdot} \) denotes the Gram-Schmidt orthogonalization).

 (b) In the second trapdoors talk we defined \(R \) to be a (strong) trapdoor for \(\Lambda^⊥(A) \) if
 \[
 A \begin{bmatrix} R \ 1 \end{bmatrix} = G,
 \]

 the special gadget matrix. Prove that the order of the rows in \(\begin{bmatrix} R \ 1 \end{bmatrix} \) is immaterial, i.e., that we can still efficiently invert LWE and sample Gaussian-distributed SIS preimages for \(A \) even if the rows of \(\begin{bmatrix} R \ 1 \end{bmatrix} \) are arbitrarily permuted. \(\text{Hint} \): show that \(\begin{bmatrix} R \ 1 \end{bmatrix} \) is a trapdoor (in the above sense) for some matrix \(A' \) whose columns are a permutation of the columns of \(A \). Then show why inverting LWE and sampling SIS preimages are equivalent for \(A \) and \(A' \).

 (c) Using the previous part, give a very simple and efficient algorithm for extending a trapdoor \(R \) for \(A \) into a trapdoor \(R' \) for any extended matrix \(A' = [A|A_1] \), so that \(s_1(R') = s_1(R) \). (Recall that \(s_1(R) = \max_{u \neq 0} \| Ru \| / \| u \| \) is the spectral norm of \(R \).)