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Block Ciphers

◮ One of the most basic cryptographic algorithms.

◮ A symmetric key algorithm (both sides hold secret
information).

◮ Is a transformation of blocks of bits (of size n) into new
blocks of bits (usually of the same size). Formally:
E : {0, 1}n × {0, 1}k 7→ {0, 1}n or Ek : {0, 1}n 7→ {0, 1}n.

◮ To deal with more (or less) data, some mode of operation
is used (ECB, CBC, counter mode, etc.).
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The Data Encryption Standard

◮ Designed by IBM at the mid 70’s.

◮ Feistel block cipher with 16 rounds.

◮ 64-bit block size, 56-bit key size.

◮ The round function accepts 32-bit input and 48-bit
subkey.
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Outline of DES
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IP and FP

IP
58 50 42 34 26 18 10 2
60 52 44 36 28 20 12 4
62 54 46 38 30 22 14 6
64 56 48 40 32 24 16 8
57 49 41 33 25 17 9 1
59 51 43 35 27 19 11 3
61 53 45 37 29 21 13 5
63 55 47 39 31 23 15 7

FP (=IP−1)
40 8 48 16 56 24 64 32
39 7 47 15 55 23 63 31
38 6 46 14 54 22 62 30
37 5 45 13 53 21 61 29
36 4 44 12 52 20 60 28
35 3 43 11 51 19 59 27
34 2 42 10 50 18 58 26
33 1 41 9 49 17 57 25
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DES’ F-function

Li Ri

E

Ki

S1
S2
S3
S4
S5
S6
S7
S8

P

Li+1 Ri+1

Expands 32 bits

to 48 bits

Input: 6 bits

Output: 4 bits

Reordering

Permutation
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DES’ F-function (cont.)

P
16 7 20 21
29 12 28 17
1 15 23 26
5 18 31 10
2 8 24 14
32 27 3 9
19 13 30 6
22 11 4 25

E
32 1 2 3 4 5
4 5 6 7 8 9
8 9 10 11 12 13
12 13 14 15 16 17
16 17 18 19 20 21
20 21 22 23 24 25
24 25 26 27 28 29
28 29 30 31 32 1
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DES’ F-function (cont.)

S1
14 4 13 1 2 15 11 8 3 10 6 12 5 9 0 7
0 15 7 4 14 2 13 1 10 6 12 11 9 5 3 8
4 1 14 8 13 6 2 11 15 12 9 7 3 10 5 0
15 12 8 2 4 9 1 7 5 11 3 14 10 0 6 13

S2
15 1 8 14 6 11 3 4 9 7 2 13 12 0 5 10
3 13 4 7 15 2 8 14 12 0 1 10 6 9 11 5
0 14 7 11 10 4 13 1 5 8 12 6 9 3 2 15
13 8 10 1 3 15 4 2 11 6 7 12 0 5 14 9
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DES’ F-function (cont.)

S3
10 0 9 14 6 3 15 5 1 13 12 7 11 4 2 8
13 7 0 9 3 4 6 10 2 8 5 14 12 11 15 1
13 6 4 9 8 15 3 0 11 1 2 12 5 10 14 7
1 10 13 0 6 9 8 7 4 15 14 3 11 5 2 12

S4
7 13 14 3 0 6 9 10 1 2 8 5 11 12 4 15
13 8 11 5 6 15 0 3 4 7 2 12 1 10 14 9
10 6 9 0 12 11 7 13 15 1 3 14 5 2 8 4
3 15 0 6 10 1 13 8 9 4 5 11 12 7 2 14
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DES’ F-function (cont.)

S5
2 12 4 1 7 10 11 6 8 5 3 15 13 0 14 9
14 11 2 12 4 7 13 1 5 0 15 10 3 9 8 6
4 2 1 11 10 13 7 8 15 9 12 5 6 3 0 14
11 8 12 7 1 14 2 13 6 15 0 9 10 4 5 3

S6
12 1 10 15 9 2 6 8 0 13 3 4 14 7 5 11
10 15 4 2 7 12 9 5 6 1 13 14 0 11 3 8
9 14 15 5 2 8 12 3 7 0 4 10 1 13 11 6
4 3 2 12 9 5 15 10 11 14 1 7 6 0 8 13
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DES’ F-function (cont.)

S7
4 11 2 14 15 0 8 13 3 12 9 7 5 10 6 1
13 0 11 7 4 9 1 10 14 3 5 12 2 15 8 6
1 4 11 13 12 3 7 14 10 15 6 8 0 5 9 2
6 11 13 8 1 4 10 7 9 5 0 15 14 2 3 12

S8
13 2 8 4 6 15 11 1 10 9 3 14 5 0 12 7
1 15 13 8 10 3 7 4 12 5 6 11 0 14 9 2
7 11 4 1 9 12 14 2 0 6 10 13 15 3 5 8
2 1 14 7 4 10 8 13 15 12 9 0 3 5 6 11
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DES’ F-function (cont.)

Beware! The S-boxes are given (as in the FIPS) in a very
confusing manner. The MSB and the LSB of the input
determine the row in the table, and the middle 4 bits
determine the column. For example, this table shows where
the entry corresponding to the input is:

Location of entries in the previous tables
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31
32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62
33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63
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DES’ Key Schedule Algorithm

◮ The key is divided into two registers C
and D (28-bit each).

◮ Each round both registers are rotated
to the left (1 or 2 bits).

◮ 24 bits from C are chosen as the
subkey entering S1,S2,S3,S4.

◮ 24 bits from D are chosen as the
subkey entering S5,S6,S7,S8.

K

PC-1

ROL1 ROL1

ROL1 ROL1

ROL2 ROL2

ROL2 ROL2

PC-2

PC-2

PC-2

Round 1 2 3 4 5 6 7 8
Rotation 1 1 2 2 2 2 2 2
Round 9 10 11 12 13 14 15 16
Rotation 1 2 2 2 2 2 2 1
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Basic Inversion Attacks

◮ A function f : {1, 2, . . . ,N} 7→ {1, 2, . . . ,N} is fixed.

◮ A value y = f (x) is given to the attacker who needs to
find x .

◮ This problem can model finding keys of an encryption
function.

◮ For example, f (k) = Ek(P) for some pre-determined
plaintext P.

◮ Or h(input) for hash functions.
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Basic Inversion Attacks (cont.)

Simple approaches for solution:

◮ Exhaustive search — the attacker computes for each i the
value of f (i) and stops once y = f (i).

◮ Table attack/Dictionary attack — the attacker
precomputes once all f (i), and stores in a table (f (i), i)
sorted according to f (i).

◮ Exhaustive search — Precomputation = 0; Memory = 0;
Time = N.

◮ Table — Precomputation = N; Memory = N; Time = 1.

Orr Dunkelman Generic Attacks 16/ 61



Block Basic TMTO MitM NewMITM Exhaustive DH DES

Some Variants of Exhaustive Search

◮ If P CPUs are available, we can let each CPU run over
1/P of the search space.

Time = N/P (in real time).
◮ Sometimes, it is possible to evaluate f (·) on several

points simultaneously (bit-slicing, same subkey in the first
round, etc.)

Does not affect asymptotic time, but actual time.
◮ Sometimes, it is possible to partially-evaluate f (·), and

only if the partial evaluation succeeds, compute the full
evaluation.

Does not affect asymptotic time, but actual time.
◮ For a specific f (·), it is usually more efficient to build

dedicated hardware (FPGA/ASIC).

Saves on the money/time ratio.
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Diffie and Hellman’s DES Machine

◮ Shortly after the introduction of DES, Diffie and Hellman
analyzed the 56-bit key length.

◮ Machine with 1,000,000 chips (in 64 racks), each tests a
DES key in a microsecond.

◮ Connecting it all (and taking some overhead), their
machine could find a DES key every half a day on average
for 20,000,000$.

◮ If you run the machine for 5 years, the cost of finding a
key is expected to be 5000$.

For more information: W. Diffie, M. Hellman, Exhaustive
cryptanalysis of the NBS Data Encryption Standard,
Computer, Vol. 10, No. 6, pp. 74–84, June 1977.
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Exhaustive Search Example — DES Challenges

◮ In 1997 RSA Labs started a DES challenge, they
published a plaintext and a ciphertext, and offered a prize
for the first one finding the key.

◮ The DESCALL project was used to solve the first
challenge in a distributed manner (90 days).

◮ In 1998, the second DES challenge was launched.

◮ distributed.net project found the key in 39 days.

◮ The third challenge (and last) was cracked using the DES
Cracker (by EFF).

◮ 22 hours to find a random key of 56-bit (full exhaustive
search was expected to take 56 hours).
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Exhaustive Search Example — DES Cracker

◮ DES cracker consisted of 1,536 custom-designed ASIC
chips at a cost of material of around 250,000$ and could
search 88 billion keys per second.

◮ That is more than 236 keys per second.

◮ A full exhaustive search requires about 819,000 seconds
(slightly less than 9.5 days).

◮ Actually, the majority of the cost is the design cost and
fabrication of the first unit.

◮ A second machine would be significantly cheaper.

◮ Today, for the same price, one should expect 512-times
the computational power for the same cost (or the same
computational power for slightly less than 500$) following
Moore’s law.
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Exhaustive Search Example — DES Cracker (cont)

◮ DES Cracker was used in the third challenge, and found
the key in 56 hours.

◮ In the amended third challenge (issued two weeks later),
the DES cracker was integrated into the Distributed.Net
project. This challenge was solved in about 22 hours.

◮ Conclusion: 56-bit key is insecure (1997).

◮ Conclusion 2: Today, 64-bit key is insecure.

◮ Conclusion 3: For real security, move to 80-bit security.
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Other Technologies

FPGA based DES-cracker: COPACOBANA ([G+07,G+08]).

◮ A board with 120 slots for FPGAs.

◮ Costs 10,000 Euros, searches 65.3 billion keys per second.

Sony PlayStation:

◮ Used for (the really cool) attacks on MD5.

◮ A PS3 machine at 400$ could perform 175 million MD5
computations per second.

GPU cards:

◮ For only 245$, an ATI HD 4850 X2 can compute 1634
million MD5 per second.
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The Full Cost of Cryptanalytic Attacks

◮ One should be very careful when parallelizing algorithms.

◮ A problem broken to x small tasks, each using the same
huge memory, actually do not yield a time improvement
by a factor of x .

◮ Moreover, one should consider the cost of the switching
and wiring between the CPUs and memory.

◮ For exhaustive search — not really an issue.
◮ For other cryptanalytic attacks: n processes, accessing a

memory of n values each cycle, requires wiring of
Ω(n3/2).

For more info: M. J. Wiener, The Full Cost of Cryptanalytic

Attacks, Journal of Cryptology, Vol. 17, No. 2, pp. 105–124,
2004.
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Hellman’s Time-Memory Tradeoff Attack [H80]

Hellman suggested a method to trade the time and the
memory complexities.

◮ Assume that f is a permutation,
such that it has one huge cycle
covering all values.

◮ Precomputation: pick at random
point x1, compute xi+1 = f (xi),
and store the

√
Nth values (i.e.,

x1, x√N+1, x2
√
N+1, . . .).

◮ Online phase: given y , compute
f j(y ) until a stored xi

√
N is

encountered. Obtain x(i−1)
√
N+1

from the table, and apply f to
it, until y is obtained.

x1

x2

x3

x4

x5

x6

x7x8

x9

f

f f

f

f

f
f

fff

f

x1

x2

x3

x4

x5

x6

x7y

x9

f

f

Table

f

Orr Dunkelman Generic Attacks 24/ 61



Block Basic TMTO MitM NewMITM Hellman D. Points Rainbow Rema

Hellman’s Time-Memory Tradeoff Attack (cont.)

◮ The suggested attack has a precomputation of P = N,
storage of M =

√
N , and online time, T =

√
N.

◮ But this works only if f induces a single cycle!

◮ Actually if f is a permutation a similar attack works,
which might require even less online computation or even
less memory (or both).

◮ The idea is to store every
√
Nth point on the cycle.

◮ Once the cycle is smaller than
√
N there is no need to

store any point on it, as you can start from y , and find its
preimage (predecessor in the graph) in less than

√
N

operations.
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Hellman’s TM Attack on Random Functions

◮ First trial:
◮ Precomputation: Take

m =
√
N starting points x i

and from each such point,
generate a sequence of

√
N

values, and store the obtained
end points (y i , x i ).

◮ Online phase: Given y , start
computing f on it, until
hitting one of the end points.
Retrieve from the table the
value of the corresponding
start point x i , and compute
forward until x = f −1(y) is
found.

x1 x11 x12 . . . y1

x2 x21 x22 . . . y2

x3 x31 x32 . . . y3

...

xm xm1 xm2 . . . ym

f f f f

f f f f

f f f f

f f f f
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Hellman’s TM Attack on Random Functions

(cont.)

◮ The function f is random. Thus, there are collisions
between the chains!

◮ From the collision, both chains “evolve” together, and
thus cover the same nodes (values).

◮ Thus, the chains are expected to cover much less than N

nodes.

◮ Adding more chains, will not solve the problem (each new
chain will cover very few new nodes before a collision is
found).

◮ Finally, because f is random, some nodes do not have
predecessors (about 1/e of the space).
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Hellman’s TM Attack on Random Functions

(cont.)

◮ Hellman solved the problem by using different

functions!

◮ Let fi be some small tweak of f , such that inverting fi is
like inverting f (for example fi(x) = f (x)⊕ i).

◮ For each of the t functions fi , pick m random starting
points, and compute chains of length t.

◮ For each function, store the values (end , start) in a table.

◮ In the online phase — try to compute f
j
i (y ) for every

i = 1, . . . t, and j = 1, . . . , t, until one of the end points
is found. Go to the corresponding start point, and find
the predecessor of y .
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Hellman’s TM Attack on Random Functions

(cont.)

◮ Preprocessing — N. Memory — t tables, of m blocks
each, total of mt. Online time — t2 applications of f ,
and t2 table accesses. As we want to cover O(N) values,
we need mt2 ≈ N, i.e.,

TM2 = N2.

◮ A common point on the curve is M = T = N2/3.

◮ Of course, if mt > N or t2 > N, then the attack is
inferior to other generic attacks.

◮ There are some small technicalities concerning the false
alarms (hitting an end point, even though the value is not
covered by the chain), but most of the time it is OK.
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Choosing the Function f

◮ Consider the case of a block cipher.

◮ When suggesting a function to invert, the function often
picked is f (K ) = EK (P) from some pre-determined
plaintext P.

◮ When the block size is equal to the key size, this function
has the “right” size.

◮ But what if the block size is not equal to the key size?

◮ If |P| > |K |, then EK (P) is longer than K , and a simple
solution is to drop some bits of the output (beware of
false alarms!).

◮ If |P| < |K |, one can define the function
f (K ) = EK (P1)||EK (P2).
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Reducing Storage Accesses using Distinguished

Points

◮ Each table contains m pairs of (end point, start point).

◮ After each computation of f (or fi), we need to access a
table.

◮ Accessing large tables (especially if m is larger than the
size of the RAM) takes time, sometimes greater than of
actually computing f .

◮ A solution by Rivest, to use the concept of distinguished
points.

◮ Instead of each chain ending always after t iterations of
fi , we let the chain continue until an easily identifiable
point is achieved (e.g., log2(t) least significant bits are 0).
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Reducing Storage Accesses using Distinguished

Points (cont.)

◮ On average, the same number of points is covered. But
instead of t2 table accesses, we can use only t of these
(whenever a distinguished point is encountered).

◮ Note that the other parameters are the same! Specifically,
the number of f invocations and/or memory size is the
same.

◮ Really good for hardware acceleration and parallelization
[SRQL02].
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Rainbow Tables [O03]

x1 x11 x12 . . . y1

x2 x21 x22 . . . y2

x3 x31 x32 . . . y3

...

xm xm1 xm2 . . . ym

f1 f2 f3 ft

f1 f2 f3 ft

f1 f2 f3 ft

f1 f2 f3 ft

y yi
ft

?y yi
ft−1 ft

?y yi
f1 f2 f3 ft

?

◮ As noted before, it might be
beneficial to reduce the number of
accesses to the table.

◮ Oechslin suggested the concept of
rainbow tables, without the need of
distinguished points.

◮ Instead of having t multiple tables
(each with m starting points), we
start with mt starting points.

◮ For each point xi , we evaluate
yi = ft(ft−1(. . . f2(f1(xi)) . . .)), and
store (yi , xi).

◮ In the online phase: given y , check
ft(y ), ft(ft−1(y )), . . . , as end
points.
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Rainbow Tables (Analysis)

◮ This method has the advantage of reducing false alarms,
and it is claimed to achieve the curve N2 = 2TM2.

◮ This is partially true, but due to some technicalities,
[BBS06] showed that rainbow tables are less favorable
(mostly due to a larger memory block).
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Estimation of success rate:

◮ Real coverage of each table — 80% [H80].

◮ Independence between tables — 55% success rate (for
mt2 = N2).

◮ Finding optimal tables/coverage —
[BPV98,SRQL02,KM96,KM99].

◮ Rainbow tables’ success rate — 99% (but for a different
problem).

◮ Stateful Random Graph model [BBS06]:

T ≥ N2

128M2 lnN
.

under randomness assumption of f .
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The Fiat-Naor Time-Memory Attack

◮ Useful for non-random functions as well.

◮ A method with the tradeoff curve TM2 = N3 · q(f ),
where q(f ) is the probability that two randomly chosen
inputs to f collide.

◮ Or a method for any function with the curve TM3 = N3

that works for any function.

◮ In both cases, the preprocessing is O(N).
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Time-Memory-Data Tradeoff Attacks

◮ Sometimes, the adversary is given several data points
y1 = f (x1), y2 = f (x2),. . . , and he needs to find only one

of the preimages.

◮ In block cipher cryptanalysis — this means related-key
attacks.

◮ For hash functions — in multiple target attacks.

◮ For stream ciphers — very interesting.

Orr Dunkelman Generic Attacks 37/ 61



Block Basic TMTO MitM NewMITM Hellman D. Points Rainbow Rema

Stream Ciphers

◮ A stream cipher is a symmetric key
encryption algorithm.

◮ It contains an internal memory, and is
composed of three algorithms:

◮ Initialize — Accepts a key and IV,
and initializes the internal memory.

◮ Update — Given the current
memory state (and sometimes the
plaintext) updates the internal
memory.

◮ Encrypt — Given the internal
memory state and the plaintext,
produces the ciphertext.

Memory

Key, IV
Init.

Output

Key stream

Update

Orr Dunkelman Generic Attacks 38/ 61



Block Basic TMTO MitM NewMITM Hellman D. Points Rainbow Rema

TMDTO Attacks on Stream Ciphers

Babbage & Golic independently developed an attack of

◮ Let N be the internal state space, and let D = N/M .

◮ Pre-processing: O(M) operations.

◮ Online time: T = D disk accesses.

◮ Tradeoff curve D ·M = N, i.e., N = TM , and
T ,M ,D < N.

[Pick M internal states, compute the stream produced by it;
after D = N/M data points the stream can be found]
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TMDTO Attacks on Stream Ciphers (cont.)

◮ Biryukov & Shamir showed that one can just apply
Hellman’s attack with 1/D of the coverage.

◮ Then, the attacker tries for each of the D given values to
invert the function.

◮ Preprocessing: P = O(N/D)

◮ Online computation: T

◮ Obtained tradeoff curve: N2 = TM2D2, assuming that
N > T ≥ D2.

◮ Later [BSW00] showed that functions of low sampling
resistance, can admit the curve N2 = TM2D2 with
T > D.
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TMDTO Attacks on Stream Ciphers (cont.)

◮ It is also possible to analyze the function that maps
(key , IV ) pair into n-bit output stream.

◮ Each stream under a (key , IV ) pair suggests one data
point.

◮ Resulting curve: N2 = TM2D2 and the restriction
T < N, MD <

√
N , T > D2.

◮ [DK08]: Out of the 2iv possible IV, pick 2iv/D IVs, and
build for each chosen IVi , the tables for the function
f : {0, 1}k × IVi → output.

◮ Wait until one of the used IVs (in the real world) is one of
the IVi , and deduce the key using the time-memory
attack. The obtained curve: N2 = TM2D2.
Restrictions: N ≥ T ;N ≥ M ;N ≥ D;T ≥ D.
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Double DES

◮ DES has a key size of 56 bits, which (along with the
complementation property) made DES look less secure
than its predecessor Lucifer.

◮ One possible solution is to encrypt under two keys, i.e.,
define DES2

K1,K2
(P) = DESK2

(DESK1
(P)).

◮ The new key size is 112 bits, and exhaustive search now
should take 2112 operations. . .
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Meet-in-the-Middle Attack on Double-DES

◮ In 2DES, C = DESK2
(DESK1

(P)) which can
be reformulated as

DES−1
K2

(C ) = DESK1
(P).

◮ The attack:

1 For all K1, compute XK1
= DESK1

(P), and
store in a table (XK1

,K1).
2 For all K2, compute XK2

= DES−1
K2

(C ) and
check whether XK2

is in the table. If so,
test (K1,K2) on a hash different
plaintext/ciphertext pair.

3 We expect 256 · 256 · 2−64 = 248 additional
tests.

PP1

E K1

XK1 (XK1
,K1)

E K2

CC1

XK2

?
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Meet-in-the-Middle Attack on Double-DES (cont.)

◮ The time complexity of this attack is
256 + 256 + 2 · 248 ≈ 257 1-DES encryptions.

◮ and the memory complexity is 256.

◮ There are easy tradeoffs for less memory (M) which takes
time 2112/M .
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Memoryless Meet in the Middle Attack

◮ Let (P1,C1) and (P2,C2) be two plaintext/ciphertext
pairs for double encryption.

◮ Define f1(K ) = EK (P1) and f2(K ) = DK (C1).
◮ The correct key (K1,K2) is one for which f1(K1) = f2(K2).
◮ To solve this problem, one can run a memoryless collision

algorithm.
◮ If the block size is equal to the key size, a collision can be

found in time O(
√

|K |) (and checked using (P2,C2)),
and there are O(|K |) collisions.

◮ Hence, after about O(|K |3/2) one can find (K1,K2) with
no additional memory.

For more information: P. C. van Oorschot, M. J. Wiener,
Improving Implementable Meet-in-the-Middle Attacks by

Orders of Magnitude, CRYPTO 1996: 229–236.
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Meet-in-the-Middle Attack on Triple-DES

◮ There are several variants which use three DES
encryption. One of them is the following triple-DES:

TDESK1,K2,K3
(P) = DESK3

(DES−1
K2

(DESK1
(P)))

◮ Of course, the same meet-in-the-middle attack can still
be applied:

1 For all K1, compute XK1
= DESK1

(P), and store in a
table (XK1

,K1).
2 For all K2,K3, compute X ′

K2,K3
= DESK2

(DES−1
K3

(C ))
and check whether X ′

K2,K3
is in the table. If so, test

(K1,K2,K3) on different plaintext/ciphertext pairs.
3 We expect 256 · 256 · 256 · 2−64 = 2104 additional tests.

◮ The running time is 2112 and the memory requirements
are 256 blocks of memory.
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Meet-in-the-Middle Attack on 2Key-Triple-DES

◮ Consider the 2K-3DES mode suggested by IBM:

2K − TDESK1,K2
(P) = DESK1

(DES−1
K2

(DESK1
(P)))

◮ The MitM attack on it is a chosen plaintext one [MH81].

◮ The idea is to find a plaintext for which DESK1
(P) = 0,

and then play with the MitM attack a bit.
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Meet-in-the-Middle Attack on 2K-Triple-DES

(cont.)

◮ The attack is as follows:

1 For any i , compute Pi = DES−1
i (0), and ask for its

encryption.
2 Let Ci = DESK1

(DES−1
K2

(DESK1
(Pi ))).

3 For each Ci compute Xi = DES−1
i (Ci ).

4 Store (Xi , i) in a table.
5 For each K2, compute X ′ = DES−1

K2
(0), and whether X ′

is in the table. If so, check (i ,K2) as the key.

◮ The attack can be optimized by noting that Steps 1 and
5, perform the same thing (using the correct data
structure).
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Other Resources

There are several very interesting papers you may wish to
consider:

◮ Paul C. van Oorschot, Michael J. Wiener, A Known

Plaintext Attack on Two-Key Triple Encryption,
EUROCRYPT 1990: 318-325.

◮ Stefan Lucks, Attacking Triple Encryption, FSE 1998:
239-253.
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Analyzing 4-Encryption

Consider the case of 4-Encryption:

C = EK4
(EK3

(EK2
(EK1

(P))))

Standard MitM attack can take 23n time
with 2n memory, or 22n time with 22n

memory. P1,P2,P3,P4P1

E K1

E K2

P2

E
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Analysis

◮ For each X 2
1 guess, we did two MitM attacks of 2n time

and memory.
◮ Then, we had another MitM of 2n time and memory.
◮ So in total — time complexity is 22n, and memory

complexity is 2n.
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Extending the Basic Attack

◮ Obviously, enjoying the 2n gain when attacking
r -encryption with r ≥ 4.

◮ Just guess the r − 4 last keys, and apply the 4-encryption
attack.

◮ Of course, the question is whether we can do better. . .

◮ Namely, can we gain more given that we already gained
something?
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The LogLayer Algorithm

◮ A straightforward extension is
the LogLayer algorithm.

◮ When attacking r -encryption,
we guess r/2− 1 internal states
just after round r/2, and attack
each half independently.

◮ With 2n memory, the running
time is 2n(r−log(r)).

◮ The “gain” sequence is:
2,4,8,16,32,. . . .

P1 P2 P3
. . . P8

C1 C2 C3
. . . C8

4

2

4
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The Square Algorithm

◮ A different improvement that
relies on symmetry.

◮ Consider 16-Encryption:

◮ Now, we need to attack
“4-Encryption” again.

◮ The complexity is 2n(r−
√
r+1).

◮ The “gain” sequence is:
2,4,9,12,16,25,36,. . . .

P1 P2 P3P4 P5 P6
. . . P16

C1 C2 C3C4 C5 C6
. . . C16

4

4

4

4

4-Encryption Attack

Time 22n

2n Remaining Keys

4-Encryption Attack

Time 22n

2n Remaining Keys

4-Encryption Attack

Time 22n

2n Remaining Keys

4-Encryption Attack

Time 22n

2n Remaining Keys

2n Keys

2n Keys

2n Keys

2n Keys

“E”

“E”

“E”

“E”
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Why Asymmetry is Important in Symmetric-Key

Attacks

◮ The shared characteristic of both LogLayer and Square is
the fact that they are “symmetric” in nature.

◮ They do not distinguish between the “forward” direction
stored in the table, and the “backward” direction which is
checked in the table.

◮ In reality, they are different. The “backward” direction
can be generated “on-the-fly”.
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The Best Algorithm (we could find)

◮ A different improvement relies
on symmetry.

◮ Consider 7-Encryption:

◮ We access the table with the 22n

suggested keys.

◮ The idea is to balance the
complexity of the attack (on the
second half) with the number of
“solutions”.

◮ The “gain” sequence is:
2,4,7,11,16,22,29,. . . .

P1 P2 P3
. . . P7

C1 C2 C3
. . . C7

3

4

3-Encryption

MitM

22n time
2n keys left

4-Encryption

MitM

22n time
22n keys left
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Attacking r -Encryption

1 Guess as many keys as needed to reduce the scheme to a
“magic number” (from the gain list).

2 Dissect the remaining encryptions:

1 For the ith magic number, guess i − 1 internal states
after round i .

2 Attack the first i rounds, obtain 2n keys, and construct a
table.

3 Attack the remaining rounds, and access the table to
find full key candidates.

We call this technique “Dissection”.
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Dissection using Parallel Collision Search

◮ Just like in the PCS algorithm for double-encryption, to
use the PCS we need to divide the full encryption
function into two.

◮ This is done be defining

F upper : (K1, . . . ,Kr/2) 7→ (X
r/2
1 , . . . ,X

r/2
r/2

) and

F lower : (Kr/2+1, . . . ,Kr ) 7→ (X
r/2
1 , . . . ,X

r/2
r/2

).

◮ Given Floyd’s algorithm (or Nivasch’s or Brent’s or . . . ),
find collisions between the two functions.

◮ Actually, we can use Hellman’s TMTO attacks to find 2n

collisions simultaneously in time 2(r/4+1/2)n.

◮ After 2(r/2)n such collisions, we expect the right one to
show up.
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Dissection using Parallel Collision Search (cont.)

◮ The key idea is to compute the functions F upper and
F lower using dissection and the extra available memory.

◮ Namely, we “agree” on the output of the functions, thus,
restricting them to a smaller space.

◮ For 8-Encryption:

F upper : (K1,K2,K3,K4) 7→ X 4
1 ,X

4
2 ,X

4
3 ,X

4
4

F̃ upper : X 2
1 7→ X 4

4

Uses P1, . . .P4 Uses P1, . . .P4 and
X 4
1 ,X

4
2 ,X

4
3

F upper : (K5,K6,K7,K8) 7→ X 4
1 ,X

4
2 ,X

4
3 ,X

4
4

F̃ upper : X 6
1 7→ X 4

4

Uses C1, . . .C4 Uses C1, . . .C4 and
X 4
1 ,X

4
2 ,X

4
3

Takes O(1) to evaluate Takes O(2n) to evaluate
Generate 23.5n “collisions”, in time 21.5n each. Gen-Orr Dunkelman Generic Attacks 59/ 61
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The Gains of the Algorithms

0
1
2
3
4
5
6
7
8
9
10
11
12

0 3 6 9 12 15 18 21 24 27 30 33 36 39 42
r

Gain

Compared with
standard MitM
with 2n mem.

b

b

b

b

b LogLayer

b

b

b

b

b

b

b Square

b

b

b

b

b

b

b

b

b Dissect

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b PCS

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b Dissect & Collide
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Questions?

Thank you for your attention!
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