Session 3: The GMW and BMR Multi-Party Protocols

Benny Pinkas
Bar-Ilan University
Overview

• The **GMW** (Goldreich-Micali-Wigderson) protocol
 – In this lecture we only cover security against semi-honest adversaries
 – # rounds depends on circuit depth

• Oblivious Transfer (OT) is extensively used in the GMW protocol
 – OT extension is a method that greatly reduces the overhead of OT
The setting (for GMW protocol)

- Parties P_1, \ldots, P_n
- Inputs x_1, \ldots, x_n (bits, but can be easily generalized)
- Outputs y_1, \ldots, y_n

- The functionality is described as a Boolean circuit.
 - Wlog, uses only XOR (+) and AND gates
 - These gates correspond to $+$, \times modulo 2.
 - Wires are ordered so that if wire k is a function of wires i and j, then $i<k$ and $j<k$.
The setting

• The adversary controls a subset of the parties
 – This subset is defined before the protocol begins (is “non-adaptive”)
 – We will not cover the adaptive case

• Communication
 – Synchronous
 – Private channels between any pair of parties (can be easily implemented using encryption)
Adversarial models

• We will cover the semi-honest case

• If adversaries can be malicious but do not abort
 – GMW: A protocol secure against any number of malicious parties

• If adversaries can be malicious and can also abort
 – GMW: A protocol secure against a minority of malicious parties with abort (will not be discussed here)
Protocol for semi-honest setting

• The protocol in a nutshell:
 – Each party shares its input bit
 – Scan the circuit gate by gate
 • Input values of gate are shared by the parties
 • Run a protocol computing a sharing of the output value of the gate
 • Repeat
 – Publish outputs
Protocol for semi-honest setting

• The protocol:
 – Each party shares its input bit
 – The sharing procedure:
 • \(P_i \) has input bit \(x_i \)
 • It chooses random bits \(r_{i,j} \) for all \(i \neq j \).
 • Sends bit \(r_{i,j} \) to \(P_j \).
 • Sets its own share to be \(r_{i,i} = x_i + (\sum_{j \neq i} r_{i,j}) \mod 2 \)
 • Therefore \(\sum_{j=1}^{n} r_{i,j} = x_i \mod 2 \).

 – Now every \(P_j \) has \(n \) shares, one for each input \(x_i \) of each \(P_i \).
Evaluating the circuit

• Scan circuit by the order of wires
• Wire c is a function of wires a,b
 ▸ P_i has shares a_i, b_i. Must get share c_i of c.

 ▸ Addition (xor) gate:
 ▸ P_i computes c_i=a_i+b_i.
 ▸ Indeed, c = a+b (mod 2) = (a_1+...+a_n) + (b_1+...+b_n) = (a_1+b_1)+...+(a_n+b_n) = c_1+...+c_n
Evaluating multiplication (AND) gates

- \(c = a \cdot b = (a_1 + \ldots + a_n) \cdot (b_1 + \ldots + b_n) = \sum_{i=1}^{n} a_i b_i + \sum_{i \neq j} a_i b_j = \sum_{i=1}^{n} a_i b_i + \sum_{1 \leq i < j \leq n} (a_i b_j + a_j b_i) \mod 2 \)

- \(P_i \) will obtain a share of \(a_i b_i + \sum_{i \neq j} (a_i b_j + a_j b_i) \)

- Computing \(a_i b_i \) by \(P_i \) is easy
- What about \(a_i b_j + a_j b_i \)?
- \(P_i \) and \(P_j \) run the following protocol for every \((i,j) \)
Evaluating multiplication gates

- Input: P_i has a_i, b_i, P_j has a_j, b_j.
- P_i outputs $a_i b_j + a_j b_i + s_{i,j}$. P_j outputs $s_{i,j}$.
- P_j:
 - Chooses a random $s_{i,j}$
 - Computes the four possible outcomes of $a_i b_j + a_j b_i + s_{i,j}$, depending on the four options for P_i’s inputs.
 - Sets these values to be its input to a 1-out-of-4 OT
- P_i is the receiver, with input $2a_i + b_i$.
Recovering the output bits

• The protocol computes shares of the output wires

• Each party sends its share of an output wire to the party P_i that should learn that output

• P_i can then sum the shares, obtain the value and output it
Proof of Security

• Recall definition of security for semi-honest setting:
 – Simulation - Given input and output, can generate the adversary’s view of a protocol execution.

• Suppose that an adversary controls the set J of all parties but P_i.

• The simulator is given (x_j, y_j) for all $P_j \in J$.
The simulator

• Shares of input wires: \(\forall j \in J \) choose
 – a random share \(r_{j,i} \) to be sent from \(P_j \) to \(P_i \),
 – and a random share \(r_{i,j} \) to be sent from \(P_i \) to \(P_j \).

• Shares of multiplication gate wires:
 – \(\forall j < i \), choose a random bit as the value learned in the 1-out-of-4 OT.
 – \(\forall j > i \), choose a random \(s_{i,j} \), and set the four inputs of the OT accordingly.

• Output wire \(y_j \) of \(j \in J \): set the message received from \(P_i \) as the XOR of \(y_j \) and the shares of that wire held by \(P_j \in J \).
Security proof

• The output of the simulation is distributed identically to the view in the real protocol
 – Certainly true for the random shares $r_{i,j}$, $r_{j,i}$ sent from and to P_i.
 – OT for $j<i$: output is random, as in the real protocol.
 – OT for $j<i$: input to the OT defined as in the real protocol.
 – Output wires: message from P_i distributed as in the real protocol.

• QED
Performance

• Must run an OT for every multiplication gate
 – Namely, public key operations per multiplication gate
 – Need a communication round between all parties per every multiplication gate
 – Can process together a set of multiplication gates if all their input wires are already shared
 – Therefore number of rounds is $O(d)$, where d is the depth of the circuit (counting only multiplication gates).
Oblivious Transfer Extension
Oblivious Transfer

• Oblivious Transfer (OT)
 – Sender (P₁) has two inputs x_0, x_1
 – Receiver (P₂) has an input bit s
 – Receiver learns x_s

• Variant: random OT
 – Sender (P₁) has two inputs x_0, x_1
 – For a randomly chosen bit s, receiver learns (x_s, s)
Efficiency of Oblivious Transfer

• OT is very efficient, but still requires exponentiations per transfer
 – When doing thousands (or millions) of OTs, this will become very costly

• Protocols for secure computation typically use OTs per gate or per input bit

• Impagliazzo and Rudich 1989: there is no blackbox construction of OT from OWF 😞
Oblivious Transfer Extensions

• An OT extension is a protocol that:
 – Uses a “small” number of base OTs (e.g., 128)
 – Uses cheap symmetric crypto to achieve many OTs (e.g., millions)
 – This is like hybrid encryption

• Note that it’s not clear that this is even possible!
Beaver’s OT Extension

• **A theoretical construction**
 – The number of OTs in Yao’s protocol depends only on evaluator’s input
 – Computing the circuit requires only n OTs but provides $m \gg n$ effective OTs

```
P_1’s input wires (2m)
  For every $i$: $(r_i^0, r_i^1)$

(1) Compute PRG(s) stretch to $m$ bits

(2) Choose a single $r_i^b$ for every $i$ using the result of the PRG. Output $(r_i^b, b)$

P_2’s output

P_2’s input wires (n)
  A random seed $s$
```
Random vs Regular OT

• Beaver’s protocol computes a random OT

 – P_2 is the receiver. Its input bit s is randomly chosen.

 – P_1 is the sender. It has a pair of input bits (r_0, r_1).

 – P_2 learns the bit r_s.
Random vs Regular OT

- We can construct regular OT from random OT (where both parties inputs are random)
 - P_1’s input: (x_0, x_1)
 P_2’s input: σ
 - Parties run random OT on bits (r_0, r_1) and s
 - P_2 receives s, r_s
 - P_2 sends $t = s \oplus \sigma$ to P_1 (essentially tells P_1 the order in which P_1 should mask its inputs).
 - P_1 sends $y_0 = x_0 \oplus r_t$ and $y_1 = x_1 \oplus r_{1-t}$
 - P_2 outputs $y_\sigma \oplus r_s$
Random vs Regular OT

• Correctness:
 – If \(s = \sigma \) then \(t = 0 \) and so \(y_0 = x_0 \oplus r_0 \) and \(y_1 = x_1 \oplus r_1 \)
 • In this case \(y_\sigma \oplus r_s = x_\sigma \)
 – If \(s \neq \sigma \) then \(t = 1 \) and so \(y_0 = x_0 \oplus r_1 \) and \(y_1 = x_1 \oplus r_0 \)
 • In this case, too, \(y_\sigma \oplus r_s = x_\sigma \)

• Privacy:
 – \(P_1 \) sees only a random bit \(t \) and so learns nothing about \(\sigma \)
 – \(P_2 \) can learn one of \((r_0, r_1) \) and so only one of \((x_0, x_1) \)
Efficient OT Extension

• A protocol for extending n OTs to m OTs
 – By Ishai, Kilian, Nissim and Petrank

• Sender’s input: $(x_1^0, x_1^1), \ldots, (x_m^0, x_m^1)$

• Receiver’s input: $\sigma = \sigma_1, \ldots, \sigma_m$

• First phase:
 – Receiver samples random strings T_1, \ldots, T_n each of length m
 – Receiver prepares pairs $(T_i, T_i \oplus \sigma)$ and plays sender in OT
 – Sender chooses random $s = s_1, \ldots, s_n$
 – Sender plays receiver with input s_i

Note: roles in these n OTs are reversed!
Efficient OT Extension

\[Q_i = \begin{cases} T_i & \text{if } s_i = 0 \\ T_i \oplus \sigma & \text{if } s_i = 1 \end{cases} \]
Efficient OT Extension

\[Q_i = \begin{cases} T_i & \text{if } s_i = 0 \\ T_i \oplus \sigma & \text{if } s_i = 1 \end{cases} \]
Efficient OT Extension

\[Q_i = \begin{cases}
T_i & \text{if } s_i = 0 \\
T_i \oplus \sigma & \text{if } s_i = 1
\end{cases} \]

- If \(\sigma_1 = 0 \) then the first row of \(Q \) equals the first row of \(T \) (whatever \(s \) equals)
- If \(\sigma_1 = 1 \) then the first row of \(Q \) equals the first row of \(T \) XORed with \(s \):
 - If \(s_i = 0 \), then equals the first entry in \(T_i \)
 - If \(s_i = 1 \), then equals the first entry in \(T_i \oplus 1 \) (since XORed with \(\sigma_1 \))
 - In both cases, obtain XOR with \(s \)
Efficient OT Extension

\[Q_i = \begin{cases}
 T_i & \text{if } s_i = 0 \\
 T_i \oplus \sigma & \text{if } s_i = 1
\end{cases} \]

- If \(\sigma_2 = 0 \) then the second row of \(Q \) equals the second row of \(T \) (whatever \(s \) equals)
- If \(\sigma_2 = 1 \) then the second row of \(Q \) equals the second row of \(T \) XORed with \(s \):
 - If \(s_i = 0 \), then equals the first entry in \(T_i \)
 - If \(s_i = 1 \), then equals the first entry in \(T_i \oplus 1 \) (since XORed with \(\sigma_1 \))
- In both cases, obtain XOR with \(s \)
Efficient OT Extension

• Using \(n \) base OTs, the matrix is transferred

• Look at each row separately (there are \(m \) rows)
 – For the \(i \)th row; denote \(Q(i) \) and \(T(i) \)
 • If \(\sigma_i = 0 \) then \(T(i) = Q(i) \)
 • If \(\sigma_i = 1 \) then \(T(i) = Q(i) \oplus s \)

• To carry out the \(i \)th transfer (phase 2 of the protocol)
 – Sender sends \(y_i^0 = H(i, Q(i)) \oplus x_i^0 \) and \(y_i^1 = H(i, Q(i) \oplus s) \oplus x_i^1 \)
 – Receiver computes \(x_i^{\sigma_i} = H(i, T(i)) \oplus y_i^\sigma \)

• Correctness
 – If \(\sigma_i = 0 \) then \(T(i) = Q(i) \) and so result is correct
 – If \(\sigma_i = 1 \) then \(T(i) = Q(i) \oplus s \) and so result is correct
Efficient OT Extension – Security

• Corrupted sender
 – The sender receives either T_i or $T_i \oplus \sigma$
 – Since T_i is random, this reveals nothing about σ
Efficient OT Extension – Security

• Corrupted receiver

 – The sender’s values are masked by $H(i, Q(i))$ and $H(i, Q(i) \oplus s)$

 – The receiver has $H(i, T(i))$ which equals one of them but does not know anything about s (sender’s queries in base Ots)

 • In the ROM, without knowing s cannot query the value

 • Can also prove assuming that $r_1, \ldots, r_m, H(s \oplus r_1), \ldots, H(s \oplus r_m)$ is pseudorandom

 • Note that the receiver knows r_1, \ldots, r_m but not s, and $H(s \oplus r_i)$ masks the ith value that the receiver should not receive
Complexity of OT extension

• Run n oblivious transfers (costing a few exponentiations each)
• Each actual OT costs a few hash operations
• This is very efficient and can be used to carry out millions of OTs per second
 – [Asharov,Lindell,Schneider,Zohner ACM CCS 2013]
• Malicious adversaries: more later in the winter school