Private Set Intersection

Benny Pinkas
Bar-llan University

(mostly based on joint work with Thomas Schneider, Gil Segev
and Michael Zohner)

5‘;\3 Secure Computation and Efficiency
t Bar-l1lan University, Israel 2015

Protocols for Specific Problems

* Generic protocols can securely compute any
functionality

— Often, the best way to securely compute a function is
to represent it as a circuit and apply a generic protocol

— This is usually the most efficient solution in terms of
development time

— This approach utilizes all improvements that are
applied to generic protocols

— Still, sometimes it is required to achieve better
performance than offered by generic protocols

(‘}gz\\enc{,
S \
Y 4
<
H

Private Set Intersection (PSI)

Server
Input: X=X ...X, Y=Y, ..V,
Output: XNYonly nothing

Other variants exist (e.g., both parties learn output;
client learns size of intersection; compute some other
function of the intersection, etc.)

=y

Applications

* PSlis a very natural problem

— Matching
* Testing human genomes [BBC+11]
* Proximity testing [NTL+11]
— Intersection of suspect lists
* Botnet detection [NMH+10]
e Contact list discovery (TextSecure, Secret, Medium)

— Measuring conversion rates for online advertising
(Facebook)

(‘}gz\\ence
S ’ \
Y 4
s
s

This talk

* Survey the major results
e Suggest optimizations based on new observations

* Present new schemes

 Compare the performance of all schemes
— On the same platform
— Using the best optimizations that we have

(‘}gz\\ence
& ’ \
=¥ 2
<
s

Implementations?

* Generic circuits seem too large for the job
— More about that later

* PSlis equivalent to oblivious transfer
— We’'ll see PSI protocols based on OT
— Given PSI we can implement OT:

— OT: Alice’s input is a bit b, Bob’s input is two bits x,,x,. Alice
should learn x,.

— Implement OT by computing PSI where
* Alice uses the input set (b0, b1)
* Bob uses the input set (0x,,1x,)

(‘}gz\\ence
s ‘
Y 4
<
H

A naive PSI protocol

* A naive solution:
— Have A and B agree on a “cryptographic hash function” H()

— B sends to A: H(y,),..., H(y,)
— A compares to H(x,),..., H(x,) and finds the intersection

* Does not protect B’s privacy if inputs do not have
considerable entropy

* This is the algorithm used by all applications we are
aware of

(‘}gz\\ence
S \
¥ 4
<
3

Preliminaries

 We only consider semi-honest (passive) adversaries

 Why discuss only semi-honest?

— There are PSI protocols secure against malicious
adversaries [FNPO4, JLO9, HN10, CKT10, FHNP13]

— These protocols are much less efficient
— None of them was implemented

(‘}gz\\ence
S ’ \
Y 4
s
s

tio,

E

&(‘}cz\\enge

K '\’A

PSI secure against malicious
adversaries [FHNP]

Py X, mg) Po(Y = {Uatact. .maysm1)

[— — -
(pk, sky) +— — (pk, ska)

Epp (Q1(-) ... Epe (Qr(+)

-

— Lupk 'L{-_}l[']]---EpJ.' :Q”k”

Qi()...Qu(-) — *

. 0/1

1'r"-{"l"'.lf:'.' sk = ,L:lf;l 1 -‘:';1'2 .“A'j

Foralla e {1...mq},j € {0,1}:
50,87 g M,
H(s) = rjl7; |75
g5 = EEhJ-:;«'r;:::.Ufwl,"
2 = By (ry -+ 55_i75)
o = Ty B Yo

Foralla e {1...ma}.j e {0.1}:
&; = D.(€s),
H(sG) —= ri 175|175

Checkif 3z e X je {01} s.t.:
t7 =7; ® z, and
€5, e, consistent with

5 T, Thy 80 81 Fhodie .
becure ComplanisA bl @ Fficiency

Bar-Ilan University, Israel 2015

10

Preliminaries — the random oracle
model

* We describe protocols that are based on the ROM

— There are PSI protocols in the standard model [FNP0O4], but
they are less efficient.

— We use OT extension
* Can be based on a non-ROM assumption
e But the random-OT variant in ROM is even more efficient

(‘}gz\\ence
& ’ \
=¥ 2
<
s

Public-key based Protocols

PSI based on Diffie-Hellman

* The Decisional Diffie-Hellman assumption
— Agree on a group G, with a generator g.

— The assumption: for random a,b,c
cannot distinguish (g% g° g°) from (g% g°, g°)

(‘}gz\\ence
S ’ \
Y 4
g
s

PSI based on Diffie-Hellman

* The protocol [M86, HFH99, AES03]:

o (& &» b
Xl' ,X LG ’ll’ ‘—3/‘ y11°")yn
[(Hx)" . (H(x)) R in parallel]
< (H(y,))P,..., (H(y,))P
< ((H(x)2)P,..., (H(x,))*)P
((H(y,))P)2,..., ((H(y,))P) in parallel

Compares the two lIsts

(H is modeled as a random oracle. Security based on DDH)

Implementation: very simple; can be based on elliptic-

curve crypto; minimal communication.
What else could we want?

'\ Secure Computation and Efficiency
Bar-Ilan University, Israel 2015 14

PSI based on Blind RSA [CT10]

 There is also a PSI protocol based on an RSA
variant

* The performance is similar to that of DH based
protocols, but

— In RSA only the owner of the private key does all the

hard work = no advantage in the two parties working
in parallel

— Cannot be based on elliptic curve crypto

(‘}gz\\enc{,
S \
Y 4
<
H

PSI based on Blind RSA [CT10]

* Bob chooses an RSA key pair ((N,e) ,d)

* Alice chooses random r,,...,r,
computes x,-(r,)s,..., x,-(r,)¢, and sends to Bob.

* Bob computes and sends

— H((y,)%),..., H((y,))
— (x,(r,)¢)%,..., (x,(r,)¢)¢, which equal (x,)%r,,...,(x,)r,

* Alice divides by r;,, applies H() and compares the lists.

é%l \ Secure Computation and Efficienc y
i'}_A) Bar-llan University, Israel 2015 16

PSI based on Oblivious Polynomial

Evaluation [FNP0O4] (short version)

(Advantage: proof in the standard model, no ROM)

Implemented based on additively homomorphic
encryption (Paillier, El Gamal).

Alice generates the polynomial
P(x)=(x-x,)(x-x,)--(x-x,) =a x" + -+ a,x+a,

Alice sends additively homomorphic encryptions
E(a,)E(a,),....E(a,)

7y Bob uses these to evaluate and send E(P(y)) r+y.)

Implementation: O(n?) exps. Can be reduced to
O(nloglogn) usmg hashing. Too inefficient.

e Computation and Efficienc y
'}_) Bar llan Universi ty Israel 2015 17

Generic Protocols

A circuit based protocol

* There are generic protocols for implementing any
functionality expressed as a Binary circuit

— GMW, Yao,...
* A naive circuit uses n? comparisons of words

e Can we do better?

“;\5 Secure Computation and Efficiency
3 Bar-Ilan University, Israel 2015

21

A circuit based protocol [HEK12]

* A circuit that has three steps

— Sort: merge two sorted lists using a bitonic merging
network [Bat68]. Uses nlog(2n) comparisons.

00K 3 3 3 3
000l 51l 5 | lm 5 0 .
0010 8 : d | 7 8 3

00t 20 I . 9 | | || 0 4 5 | p
oo 10 L] 1 | | ‘ 0| w ol e
o101 12 ; 12 | 12 PN
{110 14 || L] i 14 ! T 14 14 LT 12
0111 LU T =N B - ‘) | | bl
-2 N [] 5 | 3 | LIPS BT
1001 0 | ! | w o | 2 20 20
1010 80 i || 60| | | 1 13 35 3
o1 a0 - a0 | 20 23 35
LI 35 Al 35 | | 95 : &) . 40
- . 90 [I P
110 18 - 18 - LU 8 LR
i 0 20 40 P () 95

“;\5 Secure Computation and Efficiency
3 Bar-Ilan University, Israel 2015

A circuit based protocol [HEK12]

* A circuit that has three steps

— Sort: merge two sorted lists using a bitonic merging
network [Bat68]. Uses nlog(2n) comparisons.

— Compare: compare adjacent items. Uses 2n equality
checks.

— Shuffle: Randomly shuffle results using a Waxman
permutation network [W68], using ~nlog(n) swappings.

— Overall uses L-(3nlogn + 4n) AND gates. (L is input length)
* (2/3 of the AND gates are for multiplexers)

”;\’A Secure Computation and Efficiency
3 _) Bar-Ilan University, Israel 2015 23

Improving Circuit Based PSI

* Initial implementation was done using Yao’s protocol

e GMW uses two OTs per gate; Yao uses four
symmetric encryptions.

— Yao was considered much more efficient.
— OT extension makes GMW faster than Yao.

(‘}gz\\ence
& ’ \
=¥ 2
<
s

Recall the evaluation of multiplication
gates in GMW

* Input: P, hasa,,b,, P, hasa,,b,.

D
* P, outputs a;b,+ab,+s,,. P, outputs s ,.

o P.-
it
— Chooses arandom s, ,
— Computes the four possible outcomes of
a,b,+a,b,+s, ,, depending on the four options for
P.'s inputs.

— Sets these values to be its input to a 1-out-of-4 OT
implemented using two 1-out-of-2 OT2

(‘}cz\\ence
& ’ \
¥ 4
g
:

Improving Circuit Based PSI

* Note that in the PSI circuit 2/3 of the AND gates are
for multiplexers

— A single bit chooses between two 32 bit inputs

— For the GMW protocol, instead of independently
implementing the OTs for each gate use OTs with
inputs that are 32 bit long.

— |t is also possible to implement GMW using random-
OT, which is more efficient than regular OT.

”;\’A Secure Computation and Efficiency
3 _) Bar-Ilan University, Israel 2015

26

Performance of Circuit Based PSI

 We will see that circuit based PSI performs
unfavorably compared to other protocols

 The main advantage of circuit based PSl is that
it can be used to compute any variant of PSI

— This can be done by a programmer. Other PSI
protocols require a cryptographer in order to
apply any change to the computed function.

(‘}gz\\enc{,
o .
: 8
<
2

PSI based on OT

* OT extension is extremely efficient

* Desigh simple protocols based on OT

* Use OT extension and hashing based
constructions to maximize their performance

First step: Private equality test

* Private equality test
— Input: Alice has x, Bob has y. Each is s bits long.
— Output: is x=y?

Private equality test

e Alice input: 001 Bob input: 011

Private equality test

* Alice input: 001 Bob input: 011.
* Random OTs
Alice Bob

Rl,O R1,0 Rl,l

R2,1 RZ,O R2,1

j‘;\ﬁ Secure Computation and Efficiency
3 Bar-Ilan University, Israel 2015

(
o

Private equality test

Alice input: 001 Bob input: 011
Random OTs
Alice

.

Rl,O

R2,1

Bob sends Ro,0® R1,1 @ R2,1

Alice computes Ro,0® R1,0® R2,1, and compares.
Jnputs of length s. Random strings of length A .

“;\5 Secure Computation and Efficiency
3 Bar-Ilan University, Israel 2015

43

Private equality test

e Correctness?
* Security?

* Efficiency?
— For inputs of length s, run s random OTs of A bits
strings
— Bob sends a single A bits string to Alice

— OTs can be implemented very efficiently using OT
extension

(‘}gz\\ence
S ’ \
Y 4
g
s

Private set inclusion

* Input: Alice has x, Bob has y;,...,y,
* Output:isxin{y,,..,y,1?

* Run n Private Equality Tests in parallel.
— Alice’s OT choices for all y,,...,y,, are the same
— Run only s random OTs of seeds

— Use a pseudo-random generator to generate from each seed
n strings of length A bits (for the corresponding locations in
all columns) ©

— Send An bits from Bob to Alice

(‘}cz\\ence
S \
¥ 4
<
3

Private set intersection

* Input: Alice has {x,,...,x.}, Bob has y,,...,y,
* Output: Intersection of {x,,...,x.} and {y,,...,y,}

* Run n Private Set Inclusion protocols

» Total communication is n? A bits

» Communication can be further reduced via hashing

(‘}gz\\ence
& ’ \
¥ 4
g
:

Hashing

e Suppose each party uses a random hash function H(),
(known to both) to hash its n items to n bins.

— Then obviously if Alice and Bob have the same item, both
of them map it to the same bin.

— Each bin is expected to have O(1) items

— The items mapped to the bin can be compared using
private equality tests, with O(A) communication.

— Overall only O(nA) communication.

* The problem
— Some bins have more items
— Must hide how many items were mapped to each bin

(‘}gz\\ence
& ’ \
¥ 4
g
:

Hashing

e Solution
— Pad each bin with dummy items
— so that all bins are of the size of the most populated bin

* Mapping n items to n bins
— The expected size of a bin is O(1)
— The maximum size of a bin is whp O(logn)
— Communication increases by O(logn) to be O(nAlogn) ®

(‘}gz\\ence
& ’ \
¥ 4
g
:

Hashing

 Mapping n items to about n/ Inn bins

—T
—T
—T

ne expected size of a bin is ~ O(In n)
ne maximum size of a bin is (whp) the same

nis is ideal, since we cannot hope to pay less

than the expected cost

.§é0 , \ Secure Computation and Efficiency
i'}y Bar-llan University, Israel 2015 49

Other hashing schemes

Power of two hashing (balanced allocations)
* Cuckoo hashing

Total #OTs OT comm. | Overall Comm.
(MB) for n=218

No hashing 327,808
Simple hashing 3.7ns nA 475
Balanced 2.9ns Inlnn 2nA 939
hashing

Cuckoo hashing (2(1+€)n+Inn)s (2+Inn)nA 276

j‘;\s Secure Computation and Efficiency
t Bar-Ilan University, Israel 2015

Input length

* The protocol performs an OT for each bit in
the representation of the input items

* Reducing input length = reducing overhead!

Hashing: can inputs be shorter?

 When mapping n items to n/Inn bins each bin has
O(In n) items.

— Birthday paradox: Can hash down input values to
O(Inln n) bits, and expect no collisions in a bin!

— N=220 = |nln n = 2.6. Wow!!!

— Unfortunately, to obtain an error probability of 2 in
the birthday paradox, one needs to represent each
item using s+Inlnn bits.

— For reasonable error probabilities we gain nothing ®

(‘}gz\\ence
& ’ \
¥ 4
g
:

Permutation based Hashing
[ANS,PSSZ15]

* Hash the values in the bins to a shorter
representation while ensuring that different
values map to different hashes.

— Assume we have 2P bins. Input length is |x| > b.
— X= X Xg, Where |x, |=b.
— fis a random function whose range is [1,2°].

f

\.

— x is mapped to bin x, ®f(x;). h

— Store in that bin the value x;..

(‘}gz\\ence
& ’ \
¥ 4
g
:

Permutation based Hashing
[ANS,PSSZ15]

* Hash the values in the bins to a shorter
representation while ensuring that different
values map to different hashes.

— Assume we have 2%° bins. Input length is | x| = 32.
— X= X Xg, Where [x [=20.
— fis a random function whose range is [1,22°].

[xis mapped to bin x &f(xg). h

— Store in that bin 12 bits.

\. J

(‘}cz\\ence
S \
¥ 4
<
3

Permutation based Hashing
[ANS,PSSZ15]

* Hashing is Feistel like
— x is mapped to bin x ®f(x;).
— Store in the bin the value x;.

e |f x,x" are mapped to the same bin and store
there the same value, then x=x’, since

— Same value: x; = x'
— Same bin: x, ®f(xg) = X", Df(xR)

(‘}gz\\ence
S ’ \
Y 4
g
s

Permutation based Hashing

* Great savings!
— Assume |x|=32 and 2P=220 bins.

— Permutation-based hashing stores in a bin the
value x; of length 12 bits (instead of 32 bits).

— The overhead of the protocol is reduced to about
12/32 = 37.5% of original cost!

— Will see performance results in a minute

(‘}gz\\ence
s ‘
Y 4
<
H

Generic

Computation + Permutation

Based Hashing [PSSZ15]

* PSI based on generic secure computation +
permutation based hashing

— Alice maps her inputs to bins (using Cuckoo hashing)

— Bob maps his inputs to bins

— They bot
the lengt

— For each

n use permutation-based hashing to reduce
h of their input representations

oin, they evaluate a circuit that simply

compares the elements mapped to it by both parties

(‘}cz\\ence
& ’ \
¥ 4
g
:

Generic Computation + Permutation
Based Hashing [PSSZ15]

* Advantages

— SCS circuits compare all input elements to each other.
The new circuits work independently on each bin and
use shorter representations.

— For representation length o, the entire new circuit
has nclogn non-xor gates, and a depth of only log ©.
(SCS has O(no’logn) gates, and depth O(logn log ¢’).)

— The depth affects number of communication rounds...

— The circuit is very regular: this reduces memory
footprint and enables easy parallelization.

(‘}gz\\ence
S \
¥ 4
<
3

Experiments

* No previous “fair” comparison of all protocols

* We used two desktops in a LAN and cloud
settings
— Inputs are 32 bit long
— Statistical security parameter A=40
— Symmetric security parameter of 128 bits

(‘}gz\\ence
S \
Y 4
<
H

Experiments: run time msec (for 21° items)

Protocol _________|__local | __cloud _

Naive insecure hashing 48 560
DH ECC 51,400 162,000
Sorting circuit 47,700 225,500
Perm-based hash circuit 10,500 42,500
Perm-based hash + OT 442 3000

5‘;\5 Secure Computation and Efficiency
t Bar-l1lan University, Israel 2015 60

Experiments: run time msec (for 21° items)

Protocol _________|__local | __cloud _

Naive insecure hashing 48 560
DH ECC 51,400 162,000
Sorting circuit 47,700 225,500
Perm-based hash circuit 10,500 42,500
Perm-based hash + OT 442 3000

For n=220 items run time of insecure hashing is 710msec, and of
the Perm-based hash + OT based protocol 4500msec.

Ratio of about 6.3

For n=2%% items the ratio is about 3.4

5"‘\5 Secure Computation and Efficiency
t Bar-Ilan University, Israel 2015 61

Experiments: run time msec (for 21° items)

Protocol ___local __|__cloud _

Naive insecure hashing 48 560
DH ECC 51,400 162,000
Sorting circuit 47,700 225,500
Perm-based hash circuit 10,500 42,500
Perm-based hash + OT 442 3000

The permutation-based hashing circuit is about 4-5 times faster
than sorting based circuits.
Still, circuits are slower than other solutions.

5"‘\5 Secure Computation and Efficiency
t Bar-Ilan University, Israel 2015 62

Experiments: run time msec (for 21° items)

Protocol _________|__local | __cloud _

Naive insecure hashing 48 560
DH ECC 51,400 162,000
Sorting circuit 47,700 225,500
Perm-based hash circuit 10,500 42,500
Perm-based hash + OT 442 3000

The Diffie-Hellman protocol is slow, but is as far the easiest to
implement.

5‘;\5 Secure Computation and Efficiency
t Bar-llan University, Israel 2015 63

Communication in MB (21° items)

Protocol |

Naive insecure hashing 0.55
DH ECC 4.5
Sorting circuit 3,300
Permutation based circuit 1,050
Perm-based hash + OT 6.5

The Diffie-Hellman protocol has the best communication. The
Perm. based hash + OT protocol is pretty close.

g\s Secure Computation and Efficiency
t Bar-Ilan University, Israel 2015

64

Conclusions

e Set intersection can be efficiently applied to very
large input sets

* Different settings require different protocols
— Run time

— Communication
— Generality
— Development time

* Nice combination of crypto/hashing/systems
research.

(‘}gz\\enc{,
o .
: 8
<
2

