
Private Set Intersection

Benny Pinkas
Bar-Ilan University

(mostly based on joint work with Thomas Schneider, Gil Segev
and Michael Zohner)

Secure Computation and Efficiency
Bar-Ilan University, Israel 2015 1

Protocols for Specific Problems

• Generic protocols can securely compute any
functionality

– Often, the best way to securely compute a function is
to represent it as a circuit and apply a generic protocol

– This is usually the most efficient solution in terms of
development time

– This approach utilizes all improvements that are
applied to generic protocols

– Still, sometimes it is required to achieve better
performance than offered by generic protocols

Secure Computation and Efficiency
Bar-Ilan University, Israel 2015 2

Private Set Intersection (PSI)

 Client Server

 Input: X = x1 … xn Y = y1 … yn

 Output: X  Y only nothing

Other variants exist (e.g., both parties learn output;
client learns size of intersection; compute some other
function of the intersection, etc.)

Secure Computation and Efficiency
Bar-Ilan University, Israel 2015 3

• PSI is a very natural problem

– Matching

• Testing human genomes [BBC+11]

• Proximity testing [NTL+11]

– Intersection of suspect lists

• Botnet detection [NMH+10]

• Contact list discovery (TextSecure, Secret, Medium)

– Measuring conversion rates for online advertising
(Facebook)

Applications

Secure Computation and Efficiency
Bar-Ilan University, Israel 2015 4

• Survey the major results

• Suggest optimizations based on new observations

• Present new schemes

• Compare the performance of all schemes

– On the same platform

– Using the best optimizations that we have

This talk

Secure Computation and Efficiency
Bar-Ilan University, Israel 2015 5

• Generic circuits seem too large for the job
– More about that later

• PSI is equivalent to oblivious transfer
– We’ll see PSI protocols based on OT

– Given PSI we can implement OT:

– OT: Alice’s input is a bit b, Bob’s input is two bits x0,x1. Alice
should learn xb.

– Implement OT by computing PSI where
• Alice uses the input set (b0, b1)

• Bob uses the input set (0x0,1x1)

Implementations?

Secure Computation and Efficiency
Bar-Ilan University, Israel 2015 6

• A naïve solution:

– Have A and B agree on a “cryptographic hash function” H()

– B sends to A: H(y1),…, H(yn)

– A compares to H(x1),…, H(xn) and finds the intersection

• Does not protect B’s privacy if inputs do not have
considerable entropy

• This is the algorithm used by all applications we are
aware of

A naïve PSI protocol

Secure Computation and Efficiency
Bar-Ilan University, Israel 2015 7

• We only consider semi-honest (passive) adversaries

• Why discuss only semi-honest?

– There are PSI protocols secure against malicious
adversaries [FNP04, JL09, HN10, CKT10, FHNP13]

– These protocols are much less efficient

– None of them was implemented

Preliminaries

Secure Computation and Efficiency
Bar-Ilan University, Israel 2015 9

PSI secure against malicious
adversaries [FHNP]

Secure Computation and Efficiency
Bar-Ilan University, Israel 2015 10

• In the random oracle model (ROM) a specific function
is modeled (in the analysis) as a random function

– This analysis is very problematic

– In the theory of crypto, ROM proofs are considered heuristic

• We describe protocols that are based on the ROM

– There are PSI protocols in the standard model [FNP04], but
they are less efficient.

– We use OT extension

• Can be based on a non-ROM assumption

• But the random-OT variant in ROM is even more efficient

Preliminaries – the random oracle
model

Secure Computation and Efficiency
Bar-Ilan University, Israel 2015 11

Public-key based Protocols

Secure Computation and Efficiency
Bar-Ilan University, Israel 2015 12

• The Decisional Diffie-Hellman assumption

– Agree on a group G, with a generator g.

– The assumption: for random a,b,c
cannot distinguish (ga, gb, gab) from (ga, gb, gc)

PSI based on Diffie-Hellman

Secure Computation and Efficiency
Bar-Ilan University, Israel 2015 13

• The protocol [M86, HFH99, AES03]:

PSI based on Diffie-Hellman

(H is modeled as a random oracle. Security based on DDH)

Implementation: very simple; can be based on elliptic-
curve crypto; minimal communication.



x1,…,xn


y1,…,yn

(H(x1)),…, (H(xn))
(H(y1)),…, (H(yn))

((H(x1))),…, ((H(xn)))
((H(y1))),…, ((H(yn)))

Compares the two lists

in parallel

in parallel

What else could we want?
Secure Computation and Efficiency

Bar-Ilan University, Israel 2015 14

• There is also a PSI protocol based on an RSA
variant

• The performance is similar to that of DH based
protocols, but
– In RSA only the owner of the private key does all the

hard work  no advantage in the two parties working
in parallel

– Cannot be based on elliptic curve crypto

PSI based on Blind RSA [CT10]

Secure Computation and Efficiency
Bar-Ilan University, Israel 2015 15

• Bob chooses an RSA key pair ((N,e) ,d)

• Alice chooses random r1,…,rn
computes x1(r1)e,…, xn(rn)e, and sends to Bob.

• Bob computes and sends

– H((y1)d),…, H((yn)d)

– (x1(r1)e)d,…, (xn(rn)e)d, which equal (x1)dr1,…,(xn)drn

• Alice divides by ri, applies H() and compares the lists.

PSI based on Blind RSA [CT10]

Secure Computation and Efficiency
Bar-Ilan University, Israel 2015 16

• (Advantage: proof in the standard model, no ROM)

• Implemented based on additively homomorphic
encryption (Paillier, El Gamal).

• Alice generates the polynomial
P(x)=(x-x1)(x-x2)(x-xn) = anxn +  + a1x + a0

• Alice sends additively homomorphic encryptions
E(a0),E(a1),…,E(an)

• yi Bob uses these to evaluate and send E(P(yi)ri+yi)

• Implementation: O(n2) exps. Can be reduced to
O(nloglogn) using hashing. Too inefficient.

PSI based on Oblivious Polynomial
Evaluation [FNP04] (short version)

Secure Computation and Efficiency
Bar-Ilan University, Israel 2015 17

Generic Protocols

Secure Computation and Efficiency
Bar-Ilan University, Israel 2015 20

• There are generic protocols for implementing any
functionality expressed as a Binary circuit

– GMW, Yao,…

• A naïve circuit uses n2 comparisons of words

• Can we do better?

A circuit based protocol

Secure Computation and Efficiency
Bar-Ilan University, Israel 2015 21

• A circuit that has three steps

– Sort: merge two sorted lists using a bitonic merging
network [Bat68]. Uses nlog(2n) comparisons.

A circuit based protocol [HEK12]

Secure Computation and Efficiency
Bar-Ilan University, Israel 2015 22

• A circuit that has three steps

– Sort: merge two sorted lists using a bitonic merging
network [Bat68]. Uses nlog(2n) comparisons.

– Compare: compare adjacent items. Uses 2n equality
checks.

– Shuffle: Randomly shuffle results using a Waxman
permutation network [W68], using nlog(n) swappings.

– Overall uses L(3nlogn + 4n) AND gates. (L is input length)

• (2/3 of the AND gates are for multiplexers)

A circuit based protocol [HEK12]

Secure Computation and Efficiency
Bar-Ilan University, Israel 2015 23

• Initial implementation was done using Yao’s protocol

• GMW uses two OTs per gate; Yao uses four
symmetric encryptions.

– Yao was considered much more efficient.

– OT extension makes GMW faster than Yao.

Improving Circuit Based PSI

Secure Computation and Efficiency
Bar-Ilan University, Israel 2015 24

• Input: P1 has a1,b1, P2 has a2,b2.

• P1 outputs a1b2+ajb2+s1,2. Pj outputs s1,2.

• Pj:

– Chooses a random s1,2

– Computes the four possible outcomes of
a1b2+a2b1+s1,2, depending on the four options for
Pi’s inputs.

– Sets these values to be its input to a 1-out-of-4 OT
implemented using two 1-out-of-2 OT2

Recall the evaluation of multiplication
gates in GMW

25

• Note that in the PSI circuit 2/3 of the AND gates are
for multiplexers

– A single bit chooses between two 32 bit inputs

– For the GMW protocol, instead of independently
implementing the OTs for each gate use OTs with
inputs that are 32 bit long.

– It is also possible to implement GMW using random-
OT, which is more efficient than regular OT.

Improving Circuit Based PSI

Secure Computation and Efficiency
Bar-Ilan University, Israel 2015 26

• We will see that circuit based PSI performs
unfavorably compared to other protocols

• The main advantage of circuit based PSI is that
it can be used to compute any variant of PSI

– This can be done by a programmer. Other PSI
protocols require a cryptographer in order to
apply any change to the computed function.

Performance of Circuit Based PSI

Secure Computation and Efficiency
Bar-Ilan University, Israel 2015 27

• OT extension is extremely efficient

• Design simple protocols based on OT

• Use OT extension and hashing based
constructions to maximize their performance

PSI based on OT

Secure Computation and Efficiency
Bar-Ilan University, Israel 2015 39

• Private equality test

– Input: Alice has x, Bob has y. Each is s bits long.

– Output: is x=y?

First step: Private equality test

Secure Computation and Efficiency
Bar-Ilan University, Israel 2015 40

• Alice input: 001 Bob input: 011

Private equality test

Secure Computation and Efficiency
Bar-Ilan University, Israel 2015 41

• Alice input: 001 Bob input: 011.

• Random OTs

 Alice Bob

Private equality test

R0,0 R0,1

R1,0 R1,1

R2,0 R2,1

R0,0

R1,0

R2,1

Secure Computation and Efficiency
Bar-Ilan University, Israel 2015 42

• Alice input: 001 Bob input: 011
• Random OTs
 Alice Bob

• Bob sends R0,0  R1,1  R2,1

• Alice computes R0,0  R1,0  R2,1, and compares.
• Inputs of length s. Random strings of length λ .

Private equality test

R0,0 R0,1

R1,0 R1,1

R2,0 R2,1

R0,0

R1,0

R2,1

Secure Computation and Efficiency
Bar-Ilan University, Israel 2015 43

• Correctness?

• Security?

• Efficiency?
– For inputs of length s, run s random OTs of λ bits

strings
– Bob sends a single λ bits string to Alice
– OTs can be implemented very efficiently using OT

extension

Private equality test

Secure Computation and Efficiency
Bar-Ilan University, Israel 2015 44

• Input: Alice has x, Bob has y1,…,yn

• Output: is x in {y1,…,yn} ?

• Run n Private Equality Tests in parallel.
– Alice’s OT choices for all y1,…,yn are the same

– Run only s random OTs of seeds

– Use a pseudo-random generator to generate from each seed
n strings of length λ bits (for the corresponding locations in
all columns) 

– Send λn bits from Bob to Alice

Private set inclusion

Secure Computation and Efficiency
Bar-Ilan University, Israel 2015 45

• Input: Alice has {x1,…,xn}, Bob has y1,…,yn

• Output: Intersection of {x1,…,xn} and {y1,…,yn}

• Run n Private Set Inclusion protocols

 Total communication is n2 λ bits

 Communication can be further reduced via hashing

Private set intersection

Secure Computation and Efficiency
Bar-Ilan University, Israel 2015 46

• Suppose each party uses a random hash function H(),
(known to both) to hash its n items to n bins.

– Then obviously if Alice and Bob have the same item, both
of them map it to the same bin.

– Each bin is expected to have O(1) items

– The items mapped to the bin can be compared using
private equality tests, with O(λ) communication.

– Overall only O(nλ) communication.

• The problem

– Some bins have more items

– Must hide how many items were mapped to each bin

Hashing

Secure Computation and Efficiency
Bar-Ilan University, Israel 2015 47

• Solution

– Pad each bin with dummy items

– so that all bins are of the size of the most populated bin

• Mapping n items to n bins

– The expected size of a bin is O(1)

– The maximum size of a bin is whp O(logn)

– Communication increases by O(logn) to be O(nλlogn) 

Hashing

Secure Computation and Efficiency
Bar-Ilan University, Israel 2015 48

• Mapping n items to about n / lnn bins

– The expected size of a bin is  O(ln n)

– The maximum size of a bin is (whp) the same

– This is ideal, since we cannot hope to pay less
than the expected cost

Hashing

Secure Computation and Efficiency
Bar-Ilan University, Israel 2015 49

• Power of two hashing (balanced allocations)

• Cuckoo hashing

Other hashing schemes

Total #OTs OT comm. Overall Comm.
(MB) for n=218

No hashing ns n2λ 327,808

Simple hashing 3.7ns nλ 475

Balanced
hashing

2.9ns lnlnn 2nλ 939

Cuckoo hashing (2(1+ε)n+lnn)s (2+lnn)nλ 276

Secure Computation and Efficiency
Bar-Ilan University, Israel 2015 50

Input length

• The protocol performs an OT for each bit in
the representation of the input items

• Reducing input length  reducing overhead!

Secure Computation and Efficiency
Bar-Ilan University, Israel 2015 51

• When mapping n items to n/lnn bins each bin has
O(ln n) items.

– Birthday paradox: Can hash down input values to
O(lnln n) bits, and expect no collisions in a bin!

– N=220  lnln n = 2.6. Wow!!!

– Unfortunately, to obtain an error probability of 2-s in
the birthday paradox, one needs to represent each
item using s+lnlnn bits.

– For reasonable error probabilities we gain nothing 

Hashing: can inputs be shorter?

Secure Computation and Efficiency
Bar-Ilan University, Israel 2015 52

Permutation based Hashing
[ANS,PSSZ15]

• Hash the values in the bins to a shorter
representation while ensuring that different
values map to different hashes.

– Assume we have 2b bins. Input length is |x| > b.

– x= xLxR, where |xL|=b.

– f is a random function whose range is [1,2b].

– x is mapped to bin xLf(xR).

– Store in that bin the value xR.

Secure Computation and Efficiency
Bar-Ilan University, Israel 2015 53

Permutation based Hashing
[ANS,PSSZ15]

• Hash the values in the bins to a shorter
representation while ensuring that different
values map to different hashes.

– Assume we have 220 bins. Input length is |x| = 32.

– x= xLxR, where |xL|=20.

– f is a random function whose range is [1,220].

– x is mapped to bin xLf(xR).

– Store in that bin 12 bits.

Secure Computation and Efficiency
Bar-Ilan University, Israel 2015 54

Permutation based Hashing
[ANS,PSSZ15]

• Hashing is Feistel like

– x is mapped to bin xLf(xR).

– Store in the bin the value xR.

• If x,x’ are mapped to the same bin and store
there the same value, then x=x’, since

– Same value: xR = x’R

– Same bin: xLf(xR) = x’Lf(x’R)

Secure Computation and Efficiency
Bar-Ilan University, Israel 2015 55

Permutation based Hashing

• Great savings!

– Assume |x|=32 and 2b=220 bins.

– Permutation-based hashing stores in a bin the
value xR of length 12 bits (instead of 32 bits).

– The overhead of the protocol is reduced to about
12/32 = 37.5% of original cost!

– Will see performance results in a minute

Secure Computation and Efficiency
Bar-Ilan University, Israel 2015 56

Generic Computation + Permutation
Based Hashing [PSSZ15]

• PSI based on generic secure computation +
permutation based hashing

– Alice maps her inputs to bins (using Cuckoo hashing)

– Bob maps his inputs to bins

– They both use permutation-based hashing to reduce
the length of their input representations

– For each bin, they evaluate a circuit that simply
compares the elements mapped to it by both parties

Secure Computation and Efficiency
Bar-Ilan University, Israel 2015 57

Generic Computation + Permutation
Based Hashing [PSSZ15]

• Advantages
– SCS circuits compare all input elements to each other.

The new circuits work independently on each bin and
use shorter representations.

– For representation length , the entire new circuit
has nlogn non-xor gates, and a depth of only log .
(SCS has O(n’logn) gates, and depth O(logn log ’).)

– The depth affects number of communication rounds…

– The circuit is very regular: this reduces memory
footprint and enables easy parallelization.

Secure Computation and Efficiency
Bar-Ilan University, Israel 2015 58

• No previous “fair” comparison of all protocols

• We used two desktops in a LAN and cloud
settings

– Inputs are 32 bit long

– Statistical security parameter λ=40

– Symmetric security parameter of 128 bits

Experiments

Secure Computation and Efficiency
Bar-Ilan University, Israel 2015 59

Protocol local cloud

Naïve insecure hashing 48 560

DH ECC 51,400 162,000

Sorting circuit 47,700 225,500

Perm-based hash circuit 10,500 42,500

Perm-based hash + OT 442 3000

Experiments: run time msec (for 216 items)

Secure Computation and Efficiency
Bar-Ilan University, Israel 2015 60

Protocol local cloud

Naïve insecure hashing 48 560

DH ECC 51,400 162,000

Sorting circuit 47,700 225,500

Perm-based hash circuit 10,500 42,500

Perm-based hash + OT 442 3000

Experiments: run time msec (for 216 items)

For n=220 items run time of insecure hashing is 710msec, and of
the Perm-based hash + OT based protocol 4500msec.
Ratio of about 6.3
For n=224 items the ratio is about 3.4

Secure Computation and Efficiency
Bar-Ilan University, Israel 2015 61

Protocol local cloud

Naïve insecure hashing 48 560

DH ECC 51,400 162,000

Sorting circuit 47,700 225,500

Perm-based hash circuit 10,500 42,500

Perm-based hash + OT 442 3000

Experiments: run time msec (for 216 items)

The permutation-based hashing circuit is about 4-5 times faster
than sorting based circuits.
Still, circuits are slower than other solutions.

Secure Computation and Efficiency
Bar-Ilan University, Israel 2015 62

Protocol local cloud

Naïve insecure hashing 48 560

DH ECC 51,400 162,000

Sorting circuit 47,700 225,500

Perm-based hash circuit 10,500 42,500

Perm-based hash + OT 442 3000

Experiments: run time msec (for 216 items)

The Diffie-Hellman protocol is slow, but is as far the easiest to
implement.

Secure Computation and Efficiency
Bar-Ilan University, Israel 2015 63

Protocol

Naïve insecure hashing 0.55

DH ECC 4.5

Sorting circuit 3,300

Permutation based circuit 1,050

Perm-based hash + OT 6.5

Communication in MB (216 items)

The Diffie-Hellman protocol has the best communication. The
Perm. based hash + OT protocol is pretty close.

Secure Computation and Efficiency
Bar-Ilan University, Israel 2015 64

• Set intersection can be efficiently applied to very
large input sets

• Different settings require different protocols

– Run time

– Communication

– Generality

– Development time

• Nice combination of crypto/hashing/systems
research.

Conclusions

Secure Computation and Efficiency
Bar-Ilan University, Israel 2015 65

