Private Set Intersection

Benny Pinkas Bar-Ilan University

(mostly based on joint work with Thomas Schneider, Gil Segev and Michael Zohner)

Secure Computation and Efficiency Bar-Ilan University, Israel 2015

Protocols for Specific Problems

- Generic protocols can securely compute any functionality
 - Often, the best way to securely compute a function is to represent it as a circuit and apply a generic protocol
 - This is usually the most efficient solution in terms of development time
 - This approach utilizes all improvements that are applied to generic protocols
 - Still, sometimes it is required to achieve better performance than offered by generic protocols

Private Set Intersection (PSI)

Input:	$\mathbf{X} = \mathbf{x}_1 \dots \mathbf{x}_n$	$\mathbf{Y} = \mathbf{y}_1 \dots \mathbf{y}_n$
Output:	$X \cap Y$ only	nothing

Other variants exist (e.g., both parties learn output; client learns size of intersection; compute some other function of the intersection, etc.)

Applications

- PSI is a very natural problem
 - Matching
 - Testing human genomes [BBC+11]
 - Proximity testing [NTL+11]
 - Intersection of suspect lists
 - Botnet detection [NMH+10]
 - Contact list discovery (TextSecure, Secret, Medium)
 - Measuring conversion rates for online advertising (Facebook)

This talk

- Survey the major results
- Suggest optimizations based on new observations
- Present new schemes
- Compare the performance of all schemes
 - On the same platform
 - Using the best optimizations that we have

Implementations?

- Generic circuits seem too large for the job
 - More about that later

PSI is equivalent to oblivious transfer

- We'll see PSI protocols based on OT
- Given PSI we can implement OT:
- OT: Alice's input is a bit b, Bob's input is two bits x₀, x₁. Alice should learn x_b.
- Implement OT by computing PSI where
 - Alice uses the input set (b0, b1)
 - Bob uses the input set $(0x_0, 1x_1)$

A naïve PSI protocol

- A naïve solution:
 - Have A and B agree on a "cryptographic hash function" H()
 - B sends to A: $H(y_1)$,..., $H(y_n)$
 - A compares to $H(x_1), ..., H(x_n)$ and finds the intersection
- Does not protect B's privacy if inputs do not have considerable entropy
- This is the algorithm used by all applications we are aware of

Preliminaries

- We only consider semi-honest (passive) adversaries
- Why discuss only semi-honest?
 - There are PSI protocols secure against malicious adversaries [FNP04, JL09, HN10, CKT10, FHNP13]
 - These protocols are much less efficient
 - None of them was implemented

PSI secure against malicious adversaries [FHNP]

10

Preliminaries – the random oracle model

- In the random oracle model (ROM) a specific function is modeled (in the analysis) as a random function
 - This analysis is very problematic
 - In the theory of crypto, ROM proofs are considered heuristic
- We describe protocols that are based on the ROM
 - There are PSI protocols in the standard model [FNP04], but they are less efficient.
 - We use OT extension
 - Can be based on a non-ROM assumption
 - But the random-OT variant in ROM is even more efficient

Public-key based Protocols

PSI based on Diffie-Hellman

- The Decisional Diffie-Hellman assumption
 - Agree on a group G, with a generator g.
 - The assumption: for random *a,b,c* cannot distinguish (g^a, g^b, g^{ab}) from (g^a, g^b, g^c)

Compares the two lists

(H is modeled as a random oracle. Security based on DDH) Implementation: very simple; can be based on ellipticcurve crypto; minimal communication. What else could we want?

PSI based on Blind RSA [CT10]

- There is also a PSI protocol based on an RSA variant
- The performance is similar to that of DH based protocols, but
 - In RSA only the owner of the private key does all the hard work ⇒ no advantage in the two parties working in parallel
 - Cannot be based on elliptic curve crypto

PSI based on Blind RSA [CT10]

- Bob chooses an RSA key pair ((N,e),d)
- Alice chooses random r₁,...,r_n
 computes x₁·(r₁)^e,..., x_n·(r_n)^e, and sends to Bob.
- Bob computes and sends
 - $H((y_1)^d), ..., H((y_n)^d)$
 - $(x_1(r_1)^e)^d, ..., (x_n(r_n)^e)^d$, which equal $(x_1)^d \cdot r_1, ..., (x_n)^d \cdot r_n$
- Alice divides by r_i , applies H() and compares the lists.

PSI based on Oblivious Polynomial Evaluation [FNP04] (short version)

- (Advantage: proof in the standard model, no ROM)
- Implemented based on additively homomorphic encryption (Paillier, El Gamal).
- Alice generates the polynomial $P(x)=(x-x_1)(x-x_2)\cdots(x-x_n) = a_nx^n + \cdots + a_1x + a_0$
- Alice sends additively homomorphic encryptions
 E(a₀), E(a₁),..., E(a_n)
- $\forall y_i$ Bob uses these to evaluate and send $E(P(y_i) \cdot r_i + y_i)$
- Implementation: O(n²) exps. Can be reduced to O(nloglogn) using hashing. Too inefficient.

Generic Protocols

A circuit based protocol

- There are generic protocols for implementing any functionality expressed as a Binary circuit

 – GMW, Yao,...
- A naïve circuit uses n² comparisons of words
- Can we do better?

A circuit based protocol [HEK12]

• A circuit that has three steps

 Sort: merge two sorted lists using a bitonic merging network [Bat68]. Uses nlog(2n) comparisons.

Secure Computation and Efficiency Bar-Ilan University, Israel 2015

A circuit based protocol [HEK12]

- A circuit that has three steps
 - Sort: merge two sorted lists using a bitonic merging network [Bat68]. Uses nlog(2n) comparisons.
 - Compare: compare adjacent items. Uses 2n equality checks.
 - Shuffle: Randomly shuffle results using a Waxman permutation network [W68], using ~nlog(n) swappings.
 - Overall uses $L \cdot (3n \log n + 4n)$ AND gates. (L is input length)
 - (2/3 of the AND gates are for multiplexers)

Improving Circuit Based PSI

- Initial implementation was done using Yao's protocol
- GMW uses two OTs per gate; Yao uses four symmetric encryptions.
 - Yao was considered much more efficient.
 - OT extension makes GMW faster than Yao.

Recall the evaluation of multiplication gates in GMW

- Input: P_1 has a_1, b_1 , P_2 has a_2, b_2 .
- P_1 outputs $a_1b_2 + a_jb_2 + s_{1,2}$. P_j outputs $s_{1,2}$.
- P_j:
 Chooses a random s_{1,2}
 - Computes the four possible outcomes of $a_1b_2+a_2b_1+s_{1,2}$, depending on the four options for P_i 's inputs.
 - Sets these values to be its input to a 1-out-of-4 OT implemented using two 1-out-of-2 OT2

Improving Circuit Based PSI

- Note that in the PSI circuit 2/3 of the AND gates are for multiplexers
 - A single bit chooses between two 32 bit inputs
 - For the GMW protocol, instead of independently implementing the OTs for each gate use OTs with inputs that are 32 bit long.
 - It is also possible to implement GMW using *random*-OT, which is more efficient than regular OT.

Performance of Circuit Based PSI

• We will see that circuit based PSI performs unfavorably compared to other protocols

- The main advantage of circuit based PSI is that it can be used to compute any variant of PSI
 - This can be done by a programmer. Other PSI protocols require a *cryptographer* in order to apply any change to the computed function.

PSI based on OT

• OT extension is extremely efficient

- Design simple protocols based on OT
- Use OT extension and hashing based constructions to maximize their performance

First step: Private equality test

- Private equality test
 - Input: Alice has x, Bob has y. Each is s bits long.
 - Output: is x=y?

• Alice input: 001 Bob input: 011

- Alice input: 001 Bob input: 011.
- Random OTs

Alice

Secure Computation and Efficiency Bar-Ilan University, Israel 2015

- Alice input: 001 Bob input: 011
- Random OTs

Alice

Bob

- Bob sends $R_{0,0} \oplus R_{1,1} \oplus R_{2,1}$
- Alice computes R0,0 ⊕ R1,0 ⊕ R2,1, and compares.
- Inputs of length s. Random strings of length λ .

Secure Computation and Efficiency Bar-Ilan University, Israel 2015

- Correctness?
- Security?
- Efficiency?
 - For inputs of length s, run s random OTs of λ bits strings
 - Bob sends a single λ bits string to Alice
 - OTs can be implemented very efficiently using OT extension

Private set inclusion

- Input: Alice has **x**, Bob has **y**₁,...,**y**_n
- Output: is **x** in {**y**₁,...,**y**_n} ?
- Run n Private Equality Tests in parallel.
 - Alice's OT choices for all y_1, \dots, y_n are the same
 - Run only s <u>random</u> OTs of seeds
 - Use a pseudo-random generator to generate from each seed n strings of length λ bits (for the corresponding locations in all columns) S
 - Send λn bits from Bob to Alice

Private set intersection

- Input: Alice has {x₁,...,x_n}, Bob has y₁,...,y_n
- Output: Intersection of {x₁,...,x_n} and {y₁,...,y_n}
- Run n Private Set Inclusion protocols
 - Total communication is $\frac{n^2 \lambda}{\lambda}$ bits
 - Communication can be further reduced via hashing

Hashing

- Suppose each party uses a random hash function H(), (known to both) to hash its n items to n bins.
 - Then obviously if Alice and Bob have the same item, both of them map it to the same bin.
 - Each bin is expected to have O(1) items
 - The items mapped to the bin can be compared using private equality tests, with $O(\lambda)$ communication.
 - Overall only $O(n\lambda)$ communication.
- The problem
 - Some bins have more items
 - Must hide how many items were mapped to each bin

Hashing

- Solution
 - Pad each bin with dummy items
 - so that all bins are of the size of the most populated bin
- Mapping n items to n bins
 - The expected size of a bin is O(1)
 - The maximum size of a bin is whp O(logn)
 - Communication increases by O(logn) to be O(n λ logn) \otimes

Hashing

- Mapping n items to about n / Inn bins
 - The expected size of a bin is $\approx O(\ln n)$
 - The maximum size of a bin is (whp) the same
 - This is ideal, since we cannot hope to pay less than the expected cost

Other hashing schemes

- Power of two hashing (balanced allocations)
- Cuckoo hashing

	Total #OTs	OT comm.	Overall Comm. (MB) for n=2 ¹⁸
No hashing	ns	n²λ	327,808
Simple hashing	3.7ns	nλ	475
Balanced hashing	2.9ns InInn	2nλ	939
Cuckoo hashing	(2(1+ε)n+lnn)s	(2+lnn)nλ	276

Input length

- The protocol performs an OT for each bit in the representation of the input items
- Reducing input length \Rightarrow reducing overhead!

Hashing: can inputs be shorter?

- When mapping n items to n/lnn bins each bin has O(ln n) items.
 - Birthday paradox: Can hash down input values to O(InIn n) bits, and expect no collisions in a bin!
 - $-N=2^{20} \Rightarrow \ln\ln n = 2.6. Wow!!!$
 - Unfortunately, to obtain an error probability of 2^{-s} in the birthday paradox, one needs to represent each item using s+lnlnn bits.
 - For reasonable error probabilities we gain nothing ${\ensuremath{\mathfrak{S}}}$

Permutation based Hashing [ANS,PSSZ15]

- Hash the values in the bins to a shorter representation while ensuring that different values map to different hashes.
 - Assume we have 2^{b} bins. Input length is |x| > b.
 - $-\mathbf{x} = \mathbf{x}_{1}\mathbf{x}_{R}$, where $|\mathbf{x}_{1}| = \mathbf{b}$.
 - f is a random function whose range is [1,2^b].

- x is mapped to bin $x_L \oplus f(x_R)$. - Store in that bin the value x_R .

Permutation based Hashing [ANS,PSSZ15]

- Hash the values in the bins to a shorter representation while ensuring that different values map to different hashes.
 - Assume we have 2^{20} bins. Input length is $|\mathbf{x}| = 32$.
 - $-x = x_1 x_R$, where $|x_1| = 20$.
 - -f is a random function whose range is $[1,2^{20}]$.

- x is mapped to bin $x_L \oplus f(x_R)$. - Store in that bin 12 bits.

Permutation based Hashing [ANS,PSSZ15]

- Hashing is Feistel like
 - x is mapped to bin $x_L \oplus f(x_R)$.

– Store in the bin the value x_R .

- If x,x' are mapped to the same bin and store there the same value, then x=x', since
 - Same value: $x_R = x'_R$
 - Same bin: $x_L \oplus f(x_R) = x'_L \oplus f(x'_R)$

Permutation based Hashing

- Great savings!
 - Assume |x|=32 and $2^{b}=2^{20}$ bins.
 - Permutation-based hashing stores in a bin the value x_R of length 12 bits (instead of 32 bits).
 - The overhead of the protocol is reduced to about 12/32 = 37.5% of original cost!
 - Will see performance results in a minute

Generic Computation + Permutation Based Hashing [PSSZ15]

- PSI based on generic secure computation + permutation based hashing
 - Alice maps her inputs to bins (using Cuckoo hashing)
 - Bob maps his inputs to bins
 - They both use permutation-based hashing to reduce the length of their input representations
 - For each bin, they evaluate a circuit that simply compares the elements mapped to it by both parties

Generic Computation + Permutation Based Hashing [PSSZ15]

- Advantages
 - SCS circuits compare all input elements to each other. The new circuits work independently on each bin and use shorter representations.
 - For representation length σ, the entire new circuit has nologn non-xor gates, and a depth of only log σ. (SCS has O(nσ'logn) gates, and depth O(logn log σ').)
 - The depth affects number of communication rounds...
 - The circuit is very regular: this reduces memory footprint and enables easy parallelization.

Experiments

• No previous "fair" comparison of all protocols

- We used two desktops in a LAN and cloud settings
 - Inputs are 32 bit long
 - Statistical security parameter λ =40
 - Symmetric security parameter of 128 bits

Protocol	local	cloud
Naïve <u>insecure</u> hashing	48	560
DH ECC	51,400	162,000
Sorting circuit	47,700	225,500
Perm-based hash circuit	10,500	42,500
Perm-based hash + OT	442	3000

Protocol	local	cloud
Naïve insecure hashing	48	560
DH ECC	51,400	162,000
Sorting circuit	47,700	225,500
Perm-based hash circuit	10,500	42,500
Perm-based hash + OT	442	3000

For $n=2^{20}$ items run time of insecure hashing is 710msec, and of the Perm-based hash + OT based protocol 4500msec. Ratio of about 6.3 For $n=2^{24}$ items the ratio is about 3.4

Protocol	local	cloud
Naïve <u>insecure</u> hashing	48	560
DH ECC	51,400	162,000
Sorting circuit	47,700	225,500
Perm-based hash circuit	10,500	42,500
Perm-based hash + OT	442	3000

The permutation-based hashing circuit is about 4-5 times faster than sorting based circuits. Still, circuits are slower than other solutions.

Protocol	local	cloud
Naïve <u>insecure</u> hashing	48	560
DH ECC	51,400	162,000
Sorting circuit	47,700	225,500
Perm-based hash circuit	10,500	42,500
Perm-based hash + OT	442	3000

The Diffie-Hellman protocol is slow, but is as far the easiest to implement.

Communication in MB (2¹⁶ items)

Protocol	
Naïve <u>insecure</u> hashing	0.55
DH ECC	4.5
Sorting circuit	3,300
Permutation based circuit	1,050
Perm-based hash + OT	6.5

The Diffie-Hellman protocol has the best communication. The Perm. based hash + OT protocol is pretty close.

Conclusions

- Set intersection can be efficiently applied to very large input sets
- Different settings require different protocols
 - Run time
 - Communication
 - Generality
 - Development time
- Nice combination of crypto/hashing/systems research.

