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The MPC scenario 

Adv 

The players 

Communication Network 

x2, y2 x1, y1 

x3,y3 x4,y4 

Corruption can be passive: just 
observe computation and mess. 

In this talk: active: take full 
control 

Inputs, 
Desired 
outputs 

Also, we assume 
throughout static 
corruption: 
Adversary must 
corrupt initially. 



Goal of MPC – a bit more precisely 

Adv 

T 

Exchange 
inputs/results with 
players 

Corrupt 

Want protocol to be 
equivalent to a trusted 
(uncorruptible) party T, 
who gets inputs from 
players, computes 
results and returns 
them to the players. Can 
be formalized in the UC 
model. 



Known Results on Information Theoretic MPC 

General flavor of known results: as long as not too much corruption happens, 
any function can be securely computed. If there is too much, some functions 
become impossible to handle (usually includes the most interesting ones). 

In particular: 

Assuming secure point-to-point channels (plus broadcast) and honest 
majority, can get unconditional security for any function – and quite 
efficiently too. 



The Case of Dishonest Majority 

Assume t=n-1 players can be corrupted. Cannot have unconditional 
security. 

But we can protect against a computationally bounded adversary using 
public-key cryptography: 

If t=n-1, we  can compute any function securely, based on suitable 
computational assumptions (but termination cannot be guaranteed). 

So the efficient solutions for unconditional security are useless here? 

NO!   

”MPC in the head” can improve efficiency [IKOS06, etc.] 

“MPC with Preprocessing” this talk. Background: 

[Bendlin Damgård Orlandi Zakarias EC11], (BeDoZa)                       
[Nielsen Nordholt Orlandi 11] (TinyOT), and                                        
[Damgård Pastro Smart Zakarias 11] (SPDZ -1),                           
[Damgård Zakarias 12], (MiniMac)                                                                    
[Damgård Keller Laraia, Pastro, Scholl, Smart 13] (SPDZ-2) 



Reminder: MPC with Preprocessing 

• Preprocessing Phase, can be done any time, inputs, function to compute 
need not be known. Create raw material for  

• On-line phase, inputs, function supplied here. Function can be computed 
more efficiently because we have raw material from preprocessing.  

Goal: use only cheap information theoretic tools here, push all the expensive 
public-key stuff into preprocessing. 

 

  In the following.. 
Think of the Preprocessing as Trusted Dealer, whom we can ask to give us 
data in any form we like. 
Later, must implement the dealer via secure protocol that does not assume 
trusted parties.. 



Reminder: Semi-Honest Solution (Players are honest 
but curious) 

Secret x= x1+x2 mod p,  p a prime, x1,x2 shares in x 

x1 x2 

But players can open x by exchanging shares. 
 
Will use field with p elements here, but everything works for finite 
fields in general.. 
Will consider 2 players for now, but everything works for n>2 players 
as well.. 

x1, x2 could be supplied by the dealer. Then neither player has 
information on x. 



Computing on shared values. 

[x] = (x1,                                                              x2) 

[y] = (y1                                                                  y2) 
 
Can define [x] +[y] = [x+y] by local componentwise addition. 
 
Similar for mult. by public constants. 
 
Now we can compute any linear function on shared values. 



Multiplication [Beaver’s Circuit Randomization Technique] 

Given [x], [y], want to compute [xy]                                                                                                    

Assume the trusted dealer will give to the players  

[a], [b], [c], random a,b, c=ab. 

Open e= x-a,   d= y-b 

Then 

[xy] = [c] + e[b] + d[a] + ed  

A trusted dealer can also help us make representation of an input a 
known to only player A: 
 
Assume dealer has supplied [r], for random r and has given r to A. 
- A adjusts his share of [r] by adding a-r to it. 
- Means we now have [a]. 



Putting it all together 
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+ · 

· 

Circuit and inputs given 

Create ”objects” of form 
[a]  representing inputs. 
Jointly held by players, 
value not accessible to 
adversary. 

Compute new objects. 

Open outputs 

10 

9 6 

Conclusion 
 
Can do general passively secure multiparty computation, assuming that 
preprocessing issues enough triples [a], [b], [c] with c= ab. 
 



What if Players do not follow the protocol? 
 
Previous solution does not work: players can lie about their shares 
-> we may compute the wrong function and data can leak. 
 
The solution you have seen:  
Rabin/Ben-Or[RB88], Bendlin et al. [BDOZ, EC11], also [Nielsen et al. 
“TinyOT” Crypto12]: Authenticate shares. Charlie’s share comes with a 
message authentication code (MAC), Lucy has a corresponding key.   
When Charlie reveals his share, must produce MAC, Lucy checks using her 
key. To lie successfully, Charlie must guess the key. 
 
Problem: this does not scale well with number of players n: requires each 
player to store O(n) field elements. 
 
 



The authentication scheme we will use: 
Message x,      Key α,     MAC is m(x) = α x  (mult in the field we use) 
 
Security game: Adversary sees x (but not the key nor the MAC), chooses 
error contributions: e to modify x  and e’ to modify MAC. 
 
A verifier checks that m(x) = α (x+e) + e’  
Adversary wins if check goes through and e is not 0. 
 
If check goes through, then we have:  m(x) = α x = α (x+e) + e’  
Equivalently:     αe + e’ =0 
If e is not 0, this determines α. But e, e’ are chosen independently of α, so 

adversary wins with probability 1/p. 

 

Nice homomorphic property: the sum of two MACs is a MAC on the sum of 

the messages. 
 
 
 

The idea of SPDZ [Damgård, Pastro, Smart, Zakarias 11] 
 
Authenticate the secret value itself, not the shares 
- stay tuned for details, first 
 

http://www.google.co.il/imgres?q=Eyal+Kushilevitz&hl=iw&client=firefox-a&hs=OdS&sa=X&rls=org.mozilla:en-US:official&biw=1220&bih=756&tbm=isch&prmd=imvnso&tbnid=qF-gXVwtouH3zM:&imgrefurl=http://www.almaden.ibm.com/institute/bio/index.shtml?kushilevitz&docid=1FPmQVMPqRzJAM&imgurl=http://www.almaden.ibm.com/institute/photos/kushilevitz.gif&w=100&h=143&ei=-8ouT_PyA8qG-wbx9rWJDg&zoom=1&iact=hc&vpx=438&vpy=195&dur=1073&hovh=114&hovw=80&tx=76&ty=60&sig=112975302618521675074&page=1&tbnh=114&tbnw=80&start=0&ndsp=32&ved=1t:429,r:4,s:0


A new representation of secret values 

Secret value x= x1+x2 mod p,  x1,x2 shares in x 
MAC m(x) = α x = m(x)1 + m(x)2 mod p  shares in the MAC 
In addition dealer will issue shares α1, α2 to players such that 

α =α1+ α2.  

x1 x2 

Now, one player may be malicious. So not clear how we open a value 
reliably. Of course the MAC plays a role, but we cannot reveal the key 
α, the adversary could then cheat all other MACS.  
 
Will handle this later..  

                   m(x)1                                                     m(x)2 



Computing with Representations. 

[x] = (x1, m(x)1                                                  x2, m(x)2) 

[y] =  (y1, m(y)1                                                      y2, m(y)2) 
 
Can define [x] +[y] = [x+y] by local componentwise addition. 
Same for multiplication by public constants. 
 
Add public constant d to [x]: 
d+[x] = 
[x+d]= (x1+d, m(x)1 + d α1                               x2, m(x)2+ d α2) 
 
Can be done locally since players have shares of α. 
 



Computing with representations, continued. 

[r] = (r1, m(r)1                                                  r2, m(r)2) 

To enter input x held by Charlie, assume Dealer supplies [r] and 
r itself to Charlie. He broadcasts x-r, and players compute 
(x-r) + [r] = [x] (previous slide showed how to add public 
constant. 
 
Multiplication done using random multiplication triplets 
[a], [b], [c] supplied by dealer, just as in passive case. 



Protocol for Opening values. 
Recall: Secret value x= x1+x2 mod p,  x1,x2 shares in x 
MAC m(x) = α x = m(x)1 + m(x)2 mod p  shares in the MAC 
Dealer issues shares α1, α2 to players such that α =α1+ α2.  
 
1) Players exchange shares of x and add. A corrupt player may lie and add 
    an error e his share, so we get   x´= x +e. 
2) Players  compute locally  
    d1= α1 x’- m(x)1  and d2=  α2 x’ - m(x)2      
     Note that d1 +d2 =  α x’– m(x) 

3) Players each commit to d1 and d2, and then open (Assume for now  

    an ideal commitment functionality). Players add the opened values 

    and accept if sum is 0. 

 

A dishonest player may commit to a wrong value, so we check that 

0= d1 + d2 + e’ =  α x’– m(x) +e’ = α (x+e) – m(x) +e’ 

Or equivalently, m(x) =  α (x+e)+e’.  

Equivalent to security game for MACs: if e is not 0, this happens with 

probability 1/p. 

 
But how to do commitments for real? 



Extended representation of secret values 
Secret value x= x1+x2 mod p,  x1,x2 shares in x 
m1(x) = β1 x = m1(x)1 + m1(x)2 mod p  
m2(x) = β2 x = m2(x)1 + m2(x)2 mod p  
Dealer issues keys β1, β2 to players.  

x1 x2 

Notation: [[x]] for extended representation. 
 
Clearly, can open reliably: just send your share of x and of the MAC 
that the other player(s) can check. Works by same proof as before. 
Requires more data than [x], so use with care! 

           m1(x)1 ,m2(x)1                                           m1(x)2 ,m2(x)2 
 β1 β2 



Protocol for Commitments. 
 
Assume: Dealer supplies [[r]] to all players and r to the committer P. 
 
1) P wants to commit to value x. P broadcasts x-r.  
2) To open, all players open [[r]] and all can compute x= (x-r)+r 
 

Clearly, this is information theoretically secure.  

 
But for n players, will require to store O(n2) data values per commitment. 
Much more expensive than the [] – representation. So we should minimize 
the use of commitments. 



On-line Protocol, first version. 

1) Establish representation [x] for each input x. 
 

2) Go through Arithmetic circuit gate by gate and do addition, 
add constant, multiply by constant or multiply protocol, 
according to the type of gate encountered. 
 

3) We end with representations of outputs, which we open. 
 
 
This is secure, but efficiency is bad: each multiplication 
requires that we open 2 values, requires 2 commitments by each 
player each time. Way too expensive. 



Online Protocol, Second version. 
 
Instead of checking MACs individually for all opened values, do partial 
opening where only shares of data values are exchanged. No MAC check 
just now. 
 
1) Establish representation [x] for each input x. 

 
2) Go through Arithmetic circuit gate by gate and do addition, 

add constant, multiply by constant or multiply protocol. In 
multiply protocol, do only partial openings. 
 

3) We end with representations of outputs. 
 

4) Do a batch-check of macs on all partial openings in 2), as 
described on next slide. 
 

5) If check in 4) was OK, open outputs using normal opening 
protocol. 



We have [x0], [x1],…,[xt] and opened values x’0,…, x’t 
Want to check whether xi= x’i  
 
Instead of checking individually, take a random 
linear combination – choose e0,…,et at random and compute (locally) 
 
[y] = [e0 x0 + … + et xt] as well as  y’= e0 x’0 +…+ et x’t. 
 
If any x’i is different from xi, y’=y with probability at most 1/p. 
 
Now we check that y’=y, as in opening protocol from before: 
Pi computes locally  di= share of MAC(y) – y’ times share of α,  
 commits to di and open later. Sum must be 0. 
 
If y is not y’, this  check will accept with probability at most 1/p. 
 

Cheap Batch-checking of many MACs 



A final problem with MAC checks. 
 
Choosing all the ei’s at random is problematic: who does the choice?  
Easy solution: have preprocessing supply [[e_i]] for all i. Works, but 
uses way to many [[]]- representations. 
 
Instead, just one random value [[u]] will suffice.  
When the time comes, we open u and define ei= ui mod p 
 
Recall 
[y] = [e0 x0 + … + et xt] as well as  y’= e0 x’0 +…+ et x’t. 
 
Now, if y=y’, we have 
 
0= y-y’ = (x0-x’0) u0 + … + (xt-x’t)ut 

 
If some xi-x’i is not 0, then check only works if u happens to be a root 
in a non-zero polynomial of degree at most t. 
 
Error probability is now t/p. 



How to prove Security. 
 
Need to construct a simulator S, talks to environment (who represents 
corrupted players) on one side and to Ideal Functionality F on the other 
side.  
 
Here F is the functionality that  
1) gets inputs from players,  
2) computes desired function  
3) sends output for corrupted players to adversary 
4) If adversary says OK, send output to honest players 
 
Step 3) needed because we have dishonest majority. 

F 

S E 

inputs/outputs of honest players 

Protocol transcript 

inputs/outputs of  
corrupt players 



Environment 

Functionality for computing f 

Simulator 

Dummy 
input 

Input, honest players 

Output, if no abort 
output 

Abort or not 

PreProc. 
Func. 

Preprocessing 
Data for corrupt 
players 

Simulated 
protocol 

Inp. Corr. 
players 



Sketch of S. 
Protocol assumes functionality for preprocessing, so S needs to also 
simulate what that functionality sends to corrupt players initially. 
S starts its own copy of each honest player with default inputs, say 0. 
Can simulate what honest players send to corrupt players by just following 
the protocol. Additional issues: 
 
1)Input stage: When corrupt player P sends value c, this is supposed to be 
c= x-r for an r that S generated earlier. S sends c+r to F as P’s input. 
2)Computation phase: just follow protocol. 
3)Output phase: S gets output(s) y from F. Currently have representation 
of different value [y’]. S adjusts the share of an honest player so that we 
now have [y]. S can do this because it knows the global MAC key. Then we 
execute the normal opening.  
4)If all checks are OK in the simulated protocol, tell F it’s OK to release 
outputs. 

F 

S E 

inputs/outputs of honest players 

Protocol transcript 

inputs/outputs of  
corrupt players 



Environment 

Functionality for computing f 

Simulator 

Dummy 
input 

Input, honest 
players 

Output, if no 
abort 

output 

Abort or 
not 

PreProc. 
Func. Data for 

corrupt players 

Simulated 
protocol 

Inp. Corr. 
players 

This generates a 
view for E with a 
correctly sampled 
protocol transcript 
where the correct 
output is computed. 
 
What’s not to like? 

Maybe real protocol 
does not compute 
correct output! 
 
Fortunately, almost 
never happens because 
of the MACs 
Hence statistical sec. 



Efficiency – making it scale well with number of 
players and circuit size. 
 
The good news: for each representation [x] we have, each player stores 
only a constant number of field elements. And required number of 
representations is linear in circuit size. Number of expensive [[-]] –reps. 
independent of circuit size. 
 
Not so good news: when we open, each of the n players send a share to all 
other players, so we have O(n2) messages. 
Solution: all players send shares to a single player P, he adds them and 
broadcasts result to all. Now only O(n) messages and additions.  
P might lie about result, but this is equivalent to a corrupt player lying 
about his share in the first place. 
 
But isn’t Broadcast expensive?  
 
Yes, but we can make do with less:  the overall protocol cannot guarantee 
termination, so the broadcast doesn’t have to either.. 



“Discount” solution for broadcast. 
 
Say P wants to broadcast value x. 
1) P sends x to all players. 
2) All players send what they received to all players 
3) Each player compares all values he has seen. Abort if any mismatch. 
 
If two honest players received different values in step 1), then at least one 
honest player will abort. All honest players will see this in the next round 
and will abort too.  
We send O(n2) field elements, but can do better (amortized):  
 
Say P wants to broadcast values x1,.., xn. 
1) P sends x1,…, xn to all players. 
2) All players send a hash of what they received to all players. 
3) Each player compares all hashes he has seen. Abort if any mismatch. 
 
We can use a universal hash function that maps into the field. Gives 
unconditional security and amortized we send O(n) field elements to 
broadcast one element. 



Summing up On-line Phase 
 
For n players, to compute arithmetic circuit of size S securely with 
error probability ≈ 1/p, each player needs to 
- store O(S + n2) field elements. 
- do O(S + n2) local field operations. 
 
For large circuits and large fields, where 1/p acceptable error 
probability, means each player spend not much more work than you need 
to compute the circuit with no security! 
 
Implementation: 3 players, connected on a LAN,  
64 bit prime p, one secure multiplication in  
amortized time about 0.003 ms. 

http://www.google.dk/imgres?q=commodore+64&hl=da&safe=off&sa=X&biw=1220&bih=756&tbm=isch&prmd=imvns&tbnid=vRxlAzcY5owIiM:&imgrefurl=http://www.c64x.dk/&docid=Ld-VeD7Ar8sorM&imgurl=http://www.c64x.dk/c64/gfx/c64.jpg&w=233&h=200&ei=4MQwT9ajDIWi0QXDh7W6Bw&zoom=1&iact=hc&vpx=809&vpy=219&dur=673&hovh=160&hovw=186&tx=70&ty=57&sig=106774945622933702322&page=1&tbnh=159&tbnw=184&start=0&ndsp=15&ved=1t:429,r:3,s:0


Optimality of On-line Phase. 
 
[Winkler and Wullschleger, Crypto 10] For 2-party protocols in the 
preprocessing model, show lower bounds for the amount of 
preprocessed data you need to compute a function f securely with stat. 
security. 
Bound depends on certain combinatorial properties of f, works for OT, 
for instance. Suppose Pi gets input bit y and all other players have 
strings x and x’ of length S field elements.  
Pi is supposed to learn  yx + (1-y)x’.  A circuit of size O(S) is sufficient. 
 
A multiparty protocol in preprocessing model where each player needs 
to store o(S) field elements, would imply a 2-party protocol 
contradicting WW. 
So a protocol that allows computing any circuit of size S must have 
players store Ω(S) field elements. 
 
Can also show that Pi will have to read all his preprocessed data. 
Implies lower bound of S field operations for the work of Pi. 
Open problems: can we show that ALL players have to work this hard 
simultaneously? What about communication complexity?  

http://www.google.dk/imgres?q=commodore+64&hl=da&safe=off&sa=X&biw=1220&bih=756&tbm=isch&prmd=imvns&tbnid=vRxlAzcY5owIiM:&imgrefurl=http://www.c64x.dk/&docid=Ld-VeD7Ar8sorM&imgurl=http://www.c64x.dk/c64/gfx/c64.jpg&w=233&h=200&ei=4MQwT9ajDIWi0QXDh7W6Bw&zoom=1&iact=hc&vpx=809&vpy=219&dur=673&hovh=160&hovw=186&tx=70&ty=57&sig=106774945622933702322&page=1&tbnh=159&tbnw=184&start=0&ndsp=15&ved=1t:429,r:3,s:0


Implementing the Dealer, or: Preprocessing 
 
Assume a somewhat homomorphic encryption scheme allowing many 
values to be multiplied in parallel inside one ciphertext.  
 
Cryptosystem based on the Ring-LWE assumption, variant of 
[Brakersky et al.], Crypto 2011, using Smart et al.’s SIMD extension. 
 
Somewhat homomorphic Cryptosystem:  A secure public-key scheme, 
plaintexts are vectors m= (m1,…,ms) in Zp

s 

Epk(a+b) = Epk(a) + Epk(b) 
Epk(a*b) = Epk(a) Epk(b)    where a*b is coordinatewise multiplication 
   - and multiplication of ciphertexts takes place in some ring. 
 
Dsk(Epk(x))) = x 
    - if Epk(x) is not “too dirty”, i.e. the result of “too many” operations. 
In our case: “not too many”= 1 multiplication and many additions. 
 
Just what we need for preprocessing: each multiplication triple can be 
prepared using the same set of operations, can all be done in parallel. 
 



Distributed Decryption. 
 
Can think of ciphertext c as two polynomials (c0, c1) in 
Zq[X]/(f(X)) 
Where q >> p and f is some cleverly chosen poynomial. 
 
Simplistically speaking, secret key is a single polynomial s. 
For ciphertext (c0,c1),   
(c0- s c1) mod p  
is the plaintext (polynomial), one reads off the coefficients 
to get message. 
 
We can split s as s= s1 +… + sn  and give si to player Pi 
 
To decrypt,  Pi sends   di= -si c1 + ti 
where ti mod p=0 and ti has relatively small coefficients. 
ti is “extra noice” that is there to “hide”  si. 
 
Now, the message is  
(c0- (d1+…+dn)) mod p                     This is semi-honest secure. 



Distributed Decryption 
 
Previous protocol allows a malicious adversary to modify result. 
 
But it is a secure implementation of a functionality that 
 
- Takes ciphertext as input, decrypts,  
- Sends message to adversary 
- Allows adversary to decide output.  
 
 
This will be sufficient, if we design the rest of the protocol such that we 
can catch the errors introduced. 
 
Set-up Assumption (some set-up necessary for UC security) 
A public key has been generated, and shares of the secret key given to 
players. 
 



(Sketch of) Preprocessing Protocol 
 
Assume for simplicity that ciphertexts contain just a single field value. 
 
1)Each player Pi chooses ai, bi, ri at random and broadcasts                       
Ai= Epk(ai), Bi= Epk(bi), Ri= Epk(ri). Gives a ZK proof that he knows the 
plaintexts. 
2)All players compute A= A1+…+An, B= B1+…+Bn, and D= AB.               Define 
a to be sum of the ai’s, likewise with b. D then contains c= ab, but is a 
“noisy” ciphertext (result of a multiplication). 
3)Use distributed decryption to decrypt D-R, get result d (= ab-r+e). 
4)Set C= R+ Epk(d)                                                                                    If 
all went well, then C contains ab. In general it contains ab +e where e is an 
error known to the adversary. 
5)P1 outputs a1, b1, c1= r1+d, other Pi output ai, bi, ci= ri 

 
Note that the ci sum to c+e. We deal with this error later.. 
 
This looks already like representations [a], [b], [c]. But we still need the 
MACs.. 
 



How to add MACs 
 
0) Once and for all: create encryption K = Epk(α) for random α, as on 
previous slide. 
 
Given a ciphertext X = Epk(x), want to compute additive shares in the MAC 
on x. 
 
1)Each player Pi chooses si at random and broadcasts Si= Epk(si). Gives a 
ZK proof that he knows the plaintext. 
2)All players compute S= S1+…+Sn, and KX. 
3)Use distributed decryption to decrypt KX-S, get result d = αx-s + e. 
4)P1 outputs m1= s1+d, other Pi output mi= si.                                                                                   
Now the mi sum to αx + e, where e is an error chosen by the adversary. 
 
Note that the error is NOT a problem: we already showed the MAC is 
secure even if the adversary can add an error to the MAC. It doesn’t 
matter that the error is added already in the preprocessing! 
 
 
 



How to detect errors in multiplication triples. 
We can now generate triples in correct format: [a], [b], [c], where we are 
not sure that c=ab, however. 
Using similar method, can also generate representations of form [[t]].  
 
To detect errors, we will do the following test for lots of triples in 
parallel, show only one here for simplicity. 
 
Take another (also unreliable) triple [x], [y], [z] and do: 
 
1)Open a representation of a random [[t]] (use same t for all triples 
tested) 
2)Partially open t[a]-[x] to get u,  and [b] –[y] to get v. 
3)Partially open t[c] – [z] – v[x] – u[y] – uv. If result is not 0, abort. 
4)Check MACs for all the partial openings, same protocol as in on-line 
phase. 
 
Easy to show that if ab is not c, then test only goes through for ONE 
single value of t, or if MAC check fails. Both happen with probability 1/p. 
 



Zero-Knowledge Proofs of Plaintext Knowledge. 
 
Use classic design principle: 
 
To show that cipertext C is well formed and he knows plaintext: 
1)the prover P makes an aux. random ciphertext A. 
2)A random challenge bit b is chosen by the verifier V 
3)If b=0, open A (reveal plaintext and randomness), if b=1, open C+A. 
 
Standard techniques can be used to choose a challenge that all players 
trust is random, so P does not have to do a proof to all players. 
 
If A is chosen with proper distribution (details under the rug!), opening     
C+A reveal nothing about C, so proof is ZK.  
 
By homomorphic property, if P can open A and C+A, can also open  
C+A -A = C 
So soundness error is ½. Too inefficient to just repeat this, but we can use 
amortization technique by [Damgård and Cramer, Crypto 09] to do many 
proofs in parallel more efficiently.  



Proof of Security for Preprocessing Phase. 
 
Preprocessing Functionality F (simplified) 
Makes lots of representations [a], where  
1) It gets from the adversary (simulator) the shares that corrupt players 

should have.  
2) Then it chooses a at random and shares for honest players at random 

such that sum is correct. 
 
Necessary that adversary chooses shares for corrupt players, else 
functionality cannot be implemented: not clear that a simulator could make 
protocol transcript match the choices of the functionality. 
 
Simulator S 
1) Generate a public and secret key, makes shares of secret key and send 

corrupt players their shares. 
2) Now simulate by simply following the protocol. Decrypt ciphertexts 

from corrupted players to get their shares, send to F (note legal UC 
simulator, as no rewinding required). 

 
 



Environment 

Functionality for preprocessing 

Simulator 

No input, just 
follow 
protocol 

Shares for honest 
players, if no abort 

Shares for corrupt 
players, or abort 

Key Gen 
and share 

Shares of secret 
key for corrupt 
players 

Simulated 
protocol 
(lots of 
ciphertexts
) 

Simulation done by 
following protocol 
exactly. Must be 
good  
 
Not quite! Shares 
for honest players 
chosen by Snoopy, 
so ciphertexts in 
simulation contain 
garbage  

But the diffence 
is only inside 
ciphertext – 
should not matter 
 
But in simulation, 
we know secret 
key, so cannot 
appeal to security 
 



Proof of Security for Preprocessing Phase,part 2 
Environment sees the shares of [a] that honest players output, as well the 
ciphertexts they send in the protocol 
 
Real process 
The ciphertexts contain the actual shares of honest players. 
Ideal process 
The ciphertexts contain unrelated values chosen by the simulator 
 
Intuition: this should not matter, if the cryptosystem is CPA secure. 
 
Idea for Reduction to show this (simplified) 
1)Get a public key, and challenge ciphertexts with either real or random 
values.  
2)Now do the same as the simulator S, except that we  

1) use challenge ciphertexts to play the role of honest player’s 
ciphertexts. Use ZK simulator to do the proofs for honest 
players.  

2) Use rewinding to extract plaintexts of corrupt players’ 
ciphertexts (legal, we are not doing UC simulation here!) 

 
 



Implementation Results for Preprocessing 
 
Number of public-key operations spent to prepare a secure 
multiplication is O(n2/s) where s is number of fields elements packed 
in one ciphertext (about 12000 in our implementation). 
 
Implementation: 3 players connected on a LAN, security similar to 
1024 bit RSA, spends 10-13 ms. (amortized time) to prepare for 1 
secure 64-bit multiplication for 3 players.  
Covert security with 10% probability to cheat: about 5 ms. 
 
 
 



The overhead for small fields 
 
On-line phase only “optimal” for fields where 1/field size is comparable 
to 2-k, where k is security parameter. 
 
For small fields, e.g., F2 overhead is a factor k. 
 
Can we do better? 
 
 
 



Doing Boolean Circuits with (almost) Constant 
Overhead, the “MiniMac” Protocol 
 
[Damgård, Zakarias 2012]  
 
Idea: try to implement the Boolean circuit by doing only blockwise 
operations, i.e.,  
(b1,…,bk)  +  (v1,…,vk) =  (b1 + v1,…,bk + vk)  
(b1,…,bk)  *  (v1,…,vk) =  (b1 * v1,…,bk * vk)  
 
Hope: authenticating shares of a block should be cheaper than 
authenticating each bit individually. 
 
Result from [DIK10]: can restructure any Boolean circuit so that only block-
operations and a small number of permutations inside blocks are needed. 
Comes at cost a logarithmic blow-up.  
 



A new Authentication Scheme for k-bit blocks 

When opening, we check the MAC and that x is a codeword in C.  
To cheat, must guess many entries in α, where many = min.dist. of C 
Overhead of this MAC is constant if C has constant rate. 

Secret value x= x1+x2,  x1,x2 shares in x, + is now XOR 
NEW: x must be in an error correcting code C. 
MAC m(x) = α*x = m(x)1 + m(x)2   * is bit-wise product 
In addition dealer will issue shares α1, α2 to players such that 

α =α1+ α2.  

x1 x2 

                   m(x)1                                                     m(x)2 



New Message Authentication Codes cnt’d. 

[x] = (x1, m(x1)                                              x2, m(x2)) 

[y] = (y1, m(y1), K(y2),                          y2, m(y2), K(y1)) 
 
Can define [x] +[y] = [x+y] by local componentwise addition. 

Problem! multiplications by constants do not work the same way as 
before: say we have 
mac(x) = α*x  mult. by e on both sides, get e*macK(x) = α*(e*x) 
Even if e is a codeword, no guarantee that e*a is a codeword! 
However..   



Solving the Problem using the Schur Transform 
 
C*= Schur transform of C  
Defined as linear span of all words of form x*y where x,y are in C. 
 
e*a is in C*, so if also C* has large minimum distance, then we’re fine. 
 
e*mac(x) = α*(e*x) = mac(e*a) 
 
to open, Lucy checks that e*a is in C* 
 
Now, everything works as before. So we just need a family of  
codes C such that: 
 
C and C* have constant information and error rates 
C should be over a small field, ideally constant size. 
 
We need to checking membership in C, C* efficiently 
(would also like efficient encoding into C) 



The Problem of Checking Membership in C 
 
Naïve approach: multiply by parity check matrix H 
Works, but work per data bit is order k. Much too expensive. 
 
But we need to check many code words, so collect them in matrix A and 
check that HA =0 
Can now use smart matrix algorithms, work per data bit now k^d, d<1. 
But we want constant! 
 
Idea: let G be generator matrix for linear time encodable code, with 
constant error and data rates (e.g., Spielman – note: this is a different 
code from C).  
 
May as well check that      G(HA)Gt =0 



The Problem of Checking Membership in C, cont. 
 
May as well check that      G(HA)Gt =0 
 
If HA is not 0, then G(HA)Gt  contains a costant fraction of 1’s because 
G generates a code with large minimum distance. 
 
Note: can compute GH and AGt  in quadratic time by linear time encodability 
 
Can sample an entry in G(HA)Gt  in linear time: take random row from GH 
and random column from AGt and compute inner product.  
 
Sample linear number of entries and check for 0.  
Exponentially small error probability in quadratic total time and hence 
constant work per data bit! 
 
Actually a general algorithm for verifying matrix products in quadratic time 
over small fields with exponentially small error prob. (co-invented with 
Yuval Ishai). Previous best was Freiwalds, error prob. 1/field size. 
 



A final issue: Moving data around inside blocks. 
 
Let’s solve a more general problem: given [x], compute [f(x)], where f is a 
linear function. 
 
Let preprocessing supply [r],  [f(r)], for random r.  
 
Compute and open [x] –[r] = [x-r] to get x-r. 
All players compute f(x-r) 
Output f(x-r) + [f(r)] = [f(x)]. 
 
When f just permutes entries, not too expensive that all compute f. 
 
Works just as well for inputs that span across several blocks. 
 
Circuit known in advance: can preprocess permutation that occur between 
layers. 
Circuit not known in advance: put Benes network between layers a la 
[DIK10]. Costs a log(circuit size) factor, but now just need lots of 
permutations of single n-bit blocks. Only log(n) different permutations will 
occur.  
 



Choice of Codes and Results 
 
All results work for well-formed circuits, circuits with a “not too strange” 
structure. Circuit size S. 
DEF: Overhead H, if we have to use O(HS) computational work, 
communcation and storage. 
 
Can use Reed-Solomon codes based on GF(2^(log n)), 
For instance F256 will work nicely in practice  
 
Cannot get constant overhead as in SPDZ for large fields, but we do get 
polylog(k) log(S)  
overhead.  
 
 



More Results 
 
Can use codes from Algebraic Geometry (Cramer et al.) then field size can 
be constant. 
 
Hence get log(S) data and communication overhead, and O(1+k/n)log(S) 
computation overhead. 
 
We get the O(1+k/n) factor and not O(1) because encoding in AG codes is 
not efficient, but we can let the players share the encoding work.. 
 
All log(S) factors disappear if circuit known in advance. 
 
It’s even easier if we want to compute the same function k times in parallel. 
Can use “bit-slicing”. Then no need at all for rearranging inside blocks. 
 
 



Implementation Results 
 
In [DTZ, SCN13] did practical study of using MiniMac to compute many 
AES circuits in parallel.  
 
Used Reed-Solomon codes based on F256 and an FFT variant to speed up 
encoding in C.  
 
Constructed further optimization to use all 8 bits in each data byte. 
 
Achieved about 3 ms, amortized, per AES operation. 
 
Many ways to speed this up further for AES  
– preprocess S Boxes 
- preprocess linear mapping between SubBytes operations. 
Future/Ongoing work.. 
 
 



Implementation of Preprocessing for MiniMac? 
 
Very recent Work from Bristol: 
 
Used TinyOT preprocessing to get preprocessed data for both 
SPDZ and MiniMac. 
 
 
 



Open Problems and upcoming results.  
 
Must we communicate for every mult. gate? 
  
In honest majority setting: convert secret sharings of a and b into one of 
ab requires communcation, if the new sharing of ab has same threshold as 
before. Otherwise, can make 2-party secure computation of AND. 
 
But this argument fails in the preprocessing model! 
 
Upcoming work with Jesper Nielsen and Antigoni Polychroniadou:  
Alice has a, Bob has b. Achieving an additive sharing of ab (as in SPDZ) is 
impossible in the preprocessing model without communication. 
If the goal is a more general secret sharing of an output f(a,b), this 
impossible without communication if f() is “complex enough”. 
 
Round complexity: open if we can get constant number of rounds and 
information theoretic security efficiently. Even in preprocessing model. 
Above result indicates there is nothing to do if we go by the gate-by-gate 
approach. But in general?? 



Garbling Schemes or Protocols based on Arithmetic 
Circuits?  
 
It depends! - on the computation we want to do.  
 
If the goal is, e.g.,  linear programming (very relevent for benchmarking 
applications), want arithmetic on large integers. With SPDZ and the like, 
mult and add involving many bits is one gate.. 
 
If circuit has low depth, SPDZ/TinyOT will win in many cases (think sugar 
beets ). 
 
Sometimes we want also operations that are naturally binary (comparison), 
but then let’s find out how to convert formats efficiently and get the best 
of both worlds! 
 
What about hardware support for SPDZ like protocols? Not much has been 
done.. 
Go for it! The sky is the limit!  
 



Thanks! 


