“Tiny OT” – Part 3

A New (4 years old) Approach to Practical Active-Secure Two-Party Computation

Claudio Orlandi, Aarhus University
TinyOT authenticated bits

- $[x] = ((x_A, k_A, m_A), (x_B, k_B, m_B))$ s.t.
 - $m_B = k_A + x_B \Delta_A$ (symmetric for m_A)
 - Δ_A, Δ_B is the same for all wires.
 - MACs, keys are k-bit strings.

(Maybe adversary knows a few bits of Δ)

Similarity with Oblivious Transfer

- Sender has two messages u_0, u_1
- Receiver has a bit b and learns u_b
- Set $u_0 = k$, $u_1 = k + \Delta$, $b = x$ then $u_b = k + x\Delta$
Recap

1. **Output Gates:**
 - Exchange shares and MACs
 - Abort if MAC does not verify

2. **Input Gates:**
 - Get a random \([r]\) from *trusted dealer*
 - \(r \leftarrow \text{Open}(A,[r])\)
 - Alice sends Bob \(d=x-r\),
 - Compute \([x]=[r]+d\)
Recap

1. Addition Gates:
 - Use linearity of representation to compute
 \[z = [x] + [y] \]

2. Multiplication gates:
 - Get a random triple \([a][b][c]\) with \(c = ab\) from TD.
 - \(e \leftarrow \text{Open}([a]+[x]), \ d \leftarrow \text{Open}([b]+[y])\)
 - Compute \([z] = [c] + a[y] + b[x] - ed\)
Circuit Evaluation (Online phase)

3) $[z] \leftarrow \text{Mul}([x],[y])$:

- Get $[a],[b],[c]$ with $c=ab$ from trusted dealer

- $e=\text{Open}([a]+[x])$
- $d=\text{Open}([b]+[y])$

- Compute $[z] = [c] + e[y] + d[x] - ed$

 $ab + (ay+xy) + (bx+xy) - (ab+ay+bx+xy)$
Coming up...

- Given **authenticated bits**, produce
 authenticated multiplication triples!
The problem

- **Input:** (random) \([x], [y], [r], [s], ...\)
- **Output:** \([z]\) s.t. \([z=xy]\)

\[
= x_A y_A + x_A y_B + x_B y_A + x_B y_B
\]

Remember

- \([x] = (x_A, k_A, m_A), (x_B, k_B, m_B)\) s.t.
- \(m_B = k_A + x_B \Delta_A\) (symmetric for \(m_A\))
- \(\Delta_A, \Delta_B\) is the same for all wires.
- MACs, keys are \(k\)-bit strings.

How to authenticate local product?

How to authenticate cross product?
Part 3:
From “Auth. Bits” to “Auth. Triples”

• Authenticated local-products ($a\text{AND}$)

• Authenticated cross-products (aOT)

• “LEGO” bucketing
Authenticate local products

• **Input:** \([x], [y], [r]; \) **Alice private input:** \(x, y\)

• **Output:** \([z]\) s.t. \(z = xy\)

• **First Attempt:** (like Input)

 – \(r \leftarrow \text{Open}(A,[r])\)

 – Alice sends Bob \(d = r + xy + e\)

 – \([z]=[xy]+r + e\)

• **Corrupted Alice, what if \(e \neq 0\) ?**
Authenticate local products

- Δ is the same for all wires.
- $[x] = ((x,...,m_x), (...,k_x,...))$ s.t. $m_x = k_x + x \Delta$
- $[y] = ((y,...,m_y), (...,k_y,...))$ s.t. $m_y = k_y + y \Delta$
- $[z] = ((z,...,m_z), (...,k_z,...))$ s.t. $m_z = k_z + z \Delta$

- When $x = 0$

 $\left(m_x = k_x, m_z = k_z \right)$ iff $z = 0$

- When $x = 1$

 $\left(m_x = k_x + \Delta, m_z + m_y = k_z + k_y \right)$ iff $z = y$
Authenticate local products

- **Bob knows**
 \[U_0 = (k_x, k_z) \text{ and } U_1 = (k_x + \Delta, k_z + k_y) \]
- **Alice knows**
 \[U_x \quad \text{if } xy = z \]
 \[\text{neither} \quad \text{if } xy \neq z \]
- **How can Alice prove she knows** \(U_x \) **without revealing** \(x \)?
Proof of 1-out-of-2 strings

\[U_x \]

\[B = H(U_0) + H(U_1) \]

if \(x=0 \) \[A = H(U_x) \]
else \[A = C + H(U_x) \]

\[U_0, U_1 \]
Proof of 1-out-of-2 strings

\[B = H(U_0) + H(U_1) + e \]

if \(x = 0 \) then \(A = H(U_x) \)
else \(A = C + H(U_x) \)

\[A = H(U_0) + xe \]
Proof of 1-out-of-2 strings

U_x

$B = H(U_0) + H(U_1) + e$

U_0, U_1

$\text{if}(x=0) \ A = H(U_x)$

$\text{else} \quad A = C + H(U_x)$

\[B = H(U_0) + H(U_1) + e \]

If $e \neq 0$

w.p. $\frac{1}{2}$ abort with probability $\frac{1}{2}$

w.p. $\frac{1}{2}$ continue and Bob learns x

A \hspace{3cm} EQ \hspace{3cm} H(U_0) + xe$

ok/abort \hspace{3cm} ok/abort
Combine local multiplications

- **Input:** (random) \([x_1], [y_1], [z_1], [x_2], [y_2], [z_2]\)

 // \(z_i = x_i y_i\), Alice knows all

 // Bob knows: \(x_1\) or \(x_2\) (not both)

- **Output:** \([a], [b], [c]\) // Bob knows nothing

1. \([a] = [x_1] + [x_2]\) // Now a random

2. \([b] = [y_1]\)

3. \(d = \text{Open}([y_1] + [y_2])\)

4. \([c] = [z_1] + [z_2] + d[x_2]\)

 // \(x_1 y_1 + x_2 y_2 + x_2 y_1 + x_2 y_2 = (x_1 + x_2) y_1 = ab\)

- Authenticated local-products ($aAND$)
- Authenticated cross-products (aOT)
- “LEGO” bucketing
The problem

• **Input:** (random) \([x], [y], [r], [s], \ldots\)
• **Output:** \([z]\) s.t. \([z=xy]\)

\[= x_A y_A + x_A y_B + x_B y_A + x_B y_B\]

• **Remember**

 − \([x] = ((x_A, k_A, m_A), (x_B, k_B, m_B))\) s.t.

 − \(m_B = k_A + x_B \Delta_A\) (symmetric for \(m_A\))

 − \(\Delta_A, \Delta_B\) is the same for all wires.

 − MACs, keys are \(k\)-bit strings.
Use auth. bit to do OT

- Alice knows x
- $[x] = (x, ..., m_x), (..., k_x, ...) \text{ s.t. } m_x = k_x + x \Delta$

\[

c_0 = H(k_x) + u_0 \\
c_1 = H(k_x + \Delta) + u_1
\]

\[
u_x = c_x + H(m_x)
\]

$[x]$-OT

\[
\begin{cases}
 u_x & \rightarrow [x]\text{-OT} \\
 u_0, u_1 & \rightarrow u_x
\end{cases}
\]
Authenticated cross-products

• **Input:** \([x], [y], [z], [r]\);
• **Alice has private input:** \(x, r\)
• **Bob has private input:** \(y, z\)
• **Output:** \([s]\) s.t. \(s = xy + z\)
Authenticated cross-products

\[s = xy + z \]

\[d = r + s \]

\[[s] = [r] + d \]
Authenticated cross-products

\[s = xy + z \]

What if \(e \neq 0 \)?

\[d = r + s + e \]

\[[s] = [r] + d + e \]
If $e \neq 0$
Alice learns only one U value not both!

x, r

s, U_s

$[x]$-OT

z, U_z

$y+z, U_{y+z}$

$d = r + s + e$

$[s] = [r] + d + e$

U_{1+s+e}

$[s]$-OT

U_1, U_0

(U_0, U_1)
\[x, r \]

\[s, U_s \]

\[d = r + s \]

\[[s] = [r] + d \]

\[z, U_z \]

\[y+z, U_{y+z} \]

\[U_{1+s} \]

\[U_1, U_0 \]

\[(U_0, U_1) \]
\[s + f(x,e), U_s \]

\[d = r + s + f(x,e) \]

\[[s+f(x,e)] = [r]+d \]

\[U_{1+s} \]

\[U_{1+e}, U_{0+e} \]

\[z+e, U_z \]

\[y+z+e, U_{y+z} \]

\[x, r \]

\[y, z \]

Lead to wrong result!

Solution: make sure that cheating leads to aborts w.p. \(\frac{1}{2} \)

Bob learns s!
Step 1:
check U_0, U_1 w/EQ
(cheating leads to aborts w.p. $\frac{1}{2}$)
\[d = r + s + f(x,e) \]

\[[s+f(x,e)] = [r] + d \]
Step 2: Transfer MAC w/ bit (cheating leads to aborts w.p. ½)

Abort if
\[m_s \neq k_s + s \Delta \]

\[d = r + t \]

\[[s] = [r] + d \]
Abort if
\[m_s \neq k_s + s \Delta \]

\[d = r + t \]

\[[s] = [r] + d \]

\[e \neq 0 \rightarrow \text{abort w.p. } \frac{1}{2} \]

\[\rightarrow \text{Learn } x \text{ w.p. } \frac{1}{2} \]
Combine local multiplications

- **Input:** \([x_1], [y_1], [z_1], [s_1], [x_2], [y_2], [z_2], [s_2]\)
 // \(s_i = x_i y_i + z_i\), Alice knows \(x_i, s_i\), Bob knows \(y_i, z_i\)
 // Bob knows: \(x_1 \) or \(x_2\) (not both)

- **Output:** \([a], [b], [c], [t]\) // Bob knows nothing

1. \([a] = [x_1] + [x_2]\) // Now a random
2. \([b] = [y_1], [c] = [z_1] + [z_2]\)
3. \(d = \text{Open}([y_1] + [y_2])\)
4. \([t] = [z_1] + [z_2] + d[x_2]\)

// \(x_1 y_1 + z_1 + x_2 y_2 + z_2 + x_2 y_1 + x_2 y_2 = (x_1 + x_2) y_1 + z_1 + z_2 = ab + c\)
Part 3:
From “Auth. Bits” to “Auth. Triples”

• Authenticated local-products ($a\text{AND}$)

• Authenticated cross-products ($a\text{OT}$)

• “LEGO” bucketing
Finishing Up

• We can compute **local-products** and **cross-products** where if **one party cheats**
 – w.p. $\frac{1}{2}$ protocol **aborts**
 – w.p. $\frac{1}{2}$ protocol **continues**
 and cheating party **learns 1 bit**

• If protocol continues
 ➔ There are at most σ leaked bits (w.p. $2^{-\sigma}$)
 ➔ Let M #multiplication gates
 ➔ Typically $M \gg \sigma$
“LEGO” bucketing

• Bucket size B, M buckets
 – overhead, # of multiplications

• Total work BM, randomly assign in buckets
 – # of generated triples

• Secure if ≥ 1 “good” in each bucket
 – using combiners presented before

• Stat. Sec. $2^{-\sigma}$ with bucket size $B = \frac{\sigma}{\log_2 N}$
 – Larger circuits \rightarrow more efficiency!
Tiny OT - Recap

• Preprocessing
 – Generate authenticated bits (OT extension)
 – Exploit duality authenticated bit/OT to perform local multiplications and cross multiplications efficiently (but with some limited leakage)
 – Randomly assign in small buckets (e.g., B=4)
 – Combine to get rid of leakage

• Online phase
 – Use precomputed triples to evaluate any circuit.