“Tiny OT” – Part 1

A New (4 years old) Approach to Practical Active-Secure Two-Party Computation

Claudio Orlandi, Aarhus University
Plan for the next 3 hours...

• **Part 1: Secure Computation with a Trusted Dealer**
 – Warmup: One-Time Truth Tables
 – Evaluating Circuits with Beaver’s trick
 – MAC-then-Compute for Active Security

• **Part 2: Active Secure OT Extension**
 – Warmup: OT properties
 – Recap: Passive Secure OT Extension
 – Active Secure OT Extension

• **Part 3: From “Auth. Bits” to “Auth. Triples”**
 – Authenticated local-products ($aAND$)
 – Authenticated cross-products (aOT)
 – “LEGO” bucketing
Secure Computation

- Privacy
- Correctness
- ...

\[f(x, y) = x + y \]
What kind of Secure Computation?

- **Dishonest majority**
 - The adversary can corrupt up to n-1 participants (n=2).

- **Static Corruptions**
 - The adversary chooses which party is corrupted before the protocol starts.

- **Active Corruptions**
 - Adversary can behave arbitrarily (aka malicious)

- **No guarantees of fairness, termination**
 - Security with abort
Trusted Dealer

\[(r_A, r_B) \leftarrow D\]

\[r_A\]

\[r_B\]

\[f(x, y)\]

Trusted Party

\[x\]

\[y\]

\[z\]
Preprocessing

- Independent of \(x, y\)
- Typically only depends on size of \(f\)
- Uses public key crypto technology (slower)

Online Phase

- Uses only information theoretic tools (order of magn. faster)
Part 1: Secure Computation with a Trusted Dealer

- Warmup: One-Time Truth Tables
- Evaluating Circuits with Beaver’s trick
- MAC-then-Compute for Active Security
“The simplest 2PC protocol ever”

\[(r_A, r_B) \leftarrow D \]
“The simplest 2PC protocol ever” OTTT

(Preprocessing phase)

1) Write the truth table of the function F you want to compute

<table>
<thead>
<tr>
<th>x</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>1</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>
“The simplest 2PC protocol ever” OTTTT
(Preprocessing phase)

2) Pick random \((r, s)\), rotate rows and columns

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>4</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>
“The simplest 2PC protocol ever” OTTT
(Preprocessing phase)

3) Secret share the truth table i.e.,

Pick T_1 at random, and let

\[
\begin{array}{cccc}
1 & 4 & 4 & 1 \\
2 & 2 & 2 & 3 \\
0 & 0 & 4 & 3 \\
0 & 0 & 4 & 1 \\
\end{array}
\]
“The simplest PC protocol ever”

Online phase:

\[u = x + r \]

\[v = y + s \]

output \(f(x,y) = T_1[u,v] + T_2[u,v] \)

“Privacy”: inputs masked w/uniform random values

Correctness: by construction
What about active security?

\[u = x + r \]
\[v = y + s + e_1 \]
\[T_2[u,v] + e_2 \]
Is this cheating?

• \(v = y + s + e_1 = (y + e_1) + s = y' + s\)
 - Input substitution, not cheating according to the definition!

• \(M_2[u,v] + e_2\)
 - Changes output to \(z' = f(x,y) + e_2\)
 - Example: \(f(x,y) = 0\) for all inputs
 - With \(e_2 = 1\) Alice outputs 1
 • *Clearly breach of correctness!*
How to force Bob to send the right value?

- **Problem:** Bob can send the wrong shares
- **Solution:** use MACs
 - e.g. $M = aT + b$ with $(a, b) \leftarrow F$

Abort if $M' \neq aT' + b$
\[
\begin{align*}
 u &= x + r \\
 v &= y + s
\end{align*}
\]

output \(f(x,y) = T1[u,v] + T2[u,v] \)
else
abort

Statistical security vs. malicious Bob w.p. \(1 - 1/|F|\)
Curiosity

• Can we get perfect security?
 – Yes!
 – On the Power of Correlated Randomness in Secure Computation
 – Ishai, Kushilevitz, Meldgaard, O, Paskin
 – TCC 2013
“The simplest 2PC protocol ever” OTTT

- Optimal communication complexity 😊

- Storage exponential in input size 😞

➔ Represent function using circuit instead of truth table!
Part 1: Secure Computation with a Trusted Dealer

• Warmup: One-Time Truth Tables

• Evaluating Circuits with Beaver’s trick

• MAC-then-Compute for Active Security
Circuit based computation
Invariant

• For each **wire x** in the circuit we have

 – \([x] := (x_A, x_B)\)
 // read “x in a box”

 – Where Alice holds \(x_A\)

 – Bob holds \(x_B\)

 – Such that \(x_A + x_B = x\)

• Notation overload:

 – \(x\) is both the r-value and the l-value of \(x\)

 – use \(n(x)\) for name of \(x\) and \(v(x)\) for value of \(x\) when in doubt.

 – Then \([n(x)] = (x_A, x_B)\) such that \(x_A + x_B = v(x)\)
Circuit Evaluation
(Online phase)

1) $[x] \leftarrow \text{Input}(A,x) :$

 - chooses random x_B and send it to Bob
 - set $x_A = x + x_B$

 // symmetric for Bob

 Alice only sends a random bit! “Clearly” secure

2) $z \leftarrow \text{Open}(A,[z]) :$

 - Bob sends z_B
 - Alice outputs $z = z_A + z_B$

 // symmetric for Bob

 Alice should learn z anyway! “Clearly” secure
2) \([z] \leftarrow \text{Add}([x],[y])\) \hspace{1cm} // at the end \(z=x+y\)

- Alice computes \(z_A = x_A + y_A\)
- Bob computes \(z_B = x_B + y_B\)

- We write \([z] = [x] + [y]\)

No interaction! "Clearly" secure
As expensive as a local addition!
Circuit Evaluation
(Online phase)

2a) \[[z] \leftarrow \text{Mul}(a,[x]) \]
 \[\text{// at the end } z = a \times x \]
 - Alice computes \(z_A = a \times x_A \)
 - Bob computes \(z_B = a \times x_B \)

2c) \[[z] \leftarrow \text{Add}(a,[x]) \]
 \[\text{// at the end } z = a + x \]
 - Alice computes \(z_A = a + x_A \)
 - Bob computes \(z_B = x_B \)
Circuit Evaluation
(Online phase)

3) Multiplication?

How to compute \([z]=[xy]\) ?

Alice, Bob should compute

\[
z_A + z_B = (x_A + x_B)(y_A + y_B)
= x_A y_A + x_B y_A + x_A y_B + x_B y_B
\]

Alice can compute this
Bob can compute this

How do we compute this?
Circuit Evaluation
(Online phase)

3) \([z] \leftarrow \text{Mul}([x],[y])\):

1. Get \([a],[b],[c]\) with \(c=ab\) from trusted dealer

2. \(e=\text{Open}([a]+[x])\)

3. \(d=\text{Open}([b]+[y])\)

4. Compute \([z] = [c] + e[y] + d[x] - ed\)
 \[ab + (ay + xy) + (bx + xy) - (ab + ay + bx + xy)\]
Part 1: Secure Computation with a Trusted Dealer

• Warmup: One-Time Truth Tables

• Evaluating Circuits with Beaver’s trick

• MAC-then-Compute for Active Security
Secure Computation

\[E(x_1) \cdot E(y_1) \]
\[E(x_2) \cdot E(y_2) \]
\[E(x_3) \cdot E(y_3) \]
\[E(x_4) \cdot E(y_4) \]
\[E(x_5) \cdot E(y_5) \]

\[z^* \]

\[x \]
\[+e \]
Active Security?

• “Privacy”
 – even a malicious Bob does not learn anything.

• “Correctness”
 – a corrupted Bob can change his share during any “Open” (both final result or during multiplication) leading the final output to be incorrect.
2) \(z \leftarrow \text{Open}(A,[z]):\)

- Bob sends \(z_B + e \)
- Alice outputs \(z = z_A + z_B + e \) \hspace{1cm} // \text{symmetric for Bob}
Problem

2) $z \leftarrow \text{Open}(A,[z])$:
 - Bob sends z_B, m_B
 - Alice outputs
 - $z = z_A + z_B$ if $m_B = k_A + z_B \Delta_A$
 - “abort” otherwise

Solution: Enhance representation $[x]$
 - $[x] = \left((x_A, k_A, m_A), (x_B, k_B, m_B) \right)$ s.t.
 - $m_B = k_A + x_B \Delta_A$ (symmetric for m_A)
 - Δ_A, Δ_B is the same for all wires.
Linear representation

• Given
 – \([x] = ((x_A, k_{Ax}, m_{Ax}) , (y_B, k_{Bx}, m_{Bx}))
 – \([y] = ((y_A, k_{Ay}, m_{Ay}) , (y_B, k_{By}, m_{By}))
 – Compute \([z] = (\)
 \begin{align*}
 (z_A &= x_A + y_A, \quad k_{Az} = k_{Ax} + k_{Ay}, \quad m_{Az} = m_{Ax} + m_{Ay}) , \\
 (z_B &= x_B + y_B, \quad k_{Bz} = k_{Bx} + k_{By}, \quad m_{Bz} = m_{Bx} + m_{By}) ,
\end{align*}
 \)

• And \([z] \text{ is in the right format since...}
 \[
 m_{Bz} = (m_{Bz} + m_{By}) = (k_{Ax} + x_B \Delta_A) + (k_{Ay} + y_B \Delta_A) \\
 = (k_{Ax} + k_{Ay}) + (x_B + y_B) \Delta_A = k_{Az} + z_B \Delta_A
 \]
Recap

1. **Output Gates:**
 - Exchange shares and MACs
 - Abort if MAC does not verify

2. **Input Gates:**
 - Get a random \([r]\) from **trusted dealer**
 - \(r \leftarrow \text{Open}(A,[r])\)
 - Alice sends Bob \(d=x-r\),
 - Compute \([x]=[r]+d\)
1. Addition Gates:
 - Use linearity of representation to compute
 \[z = [x] + [y] \]

2. Multiplication Gates:
 - Get a random triple \([a][b][c]\) with \(c = ab\) from TD.
 - \(e \leftarrow \text{Open}([a]+[x]), \ d \leftarrow \text{Open}([b]+[y])\)
 - Compute \([z] = [c] + a[y] + b[x] - ed\)
Final remarks

- Size of MACs

- Lazy MAC checks
Size of MACs

1. Each party must store a mac/key pair for each other party – quadratic complexity! 😞
 - SPDZ (tomorrow) for linear complexity.

2. MAC is only as hard as guessing key!
 - k MACs in parallel give security $1/|F|^k$
 - In TinyOT $F=\mathbb{Z}_2$, then MACs/Keys are k-bit strings
 - MiniMACs for constant overhead
Lazy MAC Check

\[E(x_1) \cdot E(y_1) \]
\[E(x_2) \cdot E(y_2) \]
\[E(x_3) \cdot E(y_3) \]
\[E(x_4) \cdot E(y_4) \]
\[E(x_5) \cdot E(y_5) \]

\[z^* + e \]
Lazy MAC Check

1) $z \leftarrow \text{PartialOpen}(A,[z])$:
 1. Bob sends z_B
 2. Bob runs OutMAC.append(m_B)
 3. Alice runs InMAC.append($k_A + z_B \Delta_A$)
 4. Alice outputs $z = z_A + z_B$

2) $z \leftarrow \text{FinalOpen}(A,[z])$:
 1. Steps 1-3 as before
 2. Bob sends $u = H(\text{OutMAC})$ to Alice
 3. Alice outputs $z = z_A + z_B$ if $u = H(\text{InMAC})$
 4. “abort” otherwise
Recap of Part 1

• Two protocols “in the trusted dealer model”
 – One Time-Truth Table
 • Storage $\exp(\text{input size})$ 😞
 • Communication $O(\text{input size})$ 😊
 • 1 round 😊
 – (BeDOZa)/TinyOT online phase
 • Storage linear #number of AND gates
 • Communication linear #number of AND gates
 • #rounds = depth of the circuit
 – ...and add enough MACs to get active security
Recap of Part 1

• To do secure computation is enough to precompute enough random multiplications!

• If no semi-trusted party is available, we can use cryptographic assumption (next)