Sparse Vector
Katrina Ligett
What if we only want to answer queries whose answers fall *above a certain threshold*, or *in a certain range*?

What if we could cheaply check whether we can answer a new query using information we’ve gathered from past queries, and only “pay” for the new query if we can’t already approximate its answer well?
If all the queries were defined in advance, could use reportNoisyMax or Exponential Mechanism

If queries *adaptive*, more subtle
aboveThreshold

a simpler problem first: given adaptive sequence of queries and a threshold,

return “below” for queries (approximately) below the threshold

return “above” and halt once you reach a query that’s (approximately) above the threshold
Algorithm 1 Input is a private database D, an adaptively chosen stream of sensitivity 1 queries f_1, \ldots, and a threshold T. Output is a stream of responses a_1, \ldots

AboveThreshold($D, \{f_i\}, T, \epsilon$)

1. Let $\hat{T} = T + \text{Lap}(\frac{2}{\epsilon})$.
2. for Each query i do
 1. Let $\nu_i = \text{Lap}(\frac{4}{\epsilon})$
 2. if $f_i(D) + \nu_i \geq \hat{T}$ then
 1. Output $a_i = \top$.
 2. Halt.
 3. else
 1. Output $a_i = \bot$.
 end if
end for
aboveThreshold: privacy

Claim: aboveThreshold is $(\varepsilon, 0)$-differentially private.
aboveThreshold: accuracy

Theorem 3.24. For any sequence of k queries f_1, \ldots, f_k such that $|\{i < k : f_i(D) \geq T - \alpha\}| = 0$ (i.e. the only query close to being above threshold is possibly the last one), $\text{AboveThreshold}(D, \{f_i\}, T, \epsilon)$ is (α, β) accurate for:

$$\alpha = \frac{8(\log k + \log(2/\beta))}{\epsilon}.$$
to handle c above-threshold queries...

run aboveThreshold c times, restarting after each above-Threshold query

use composition theorems (basic or advanced) to compose privacy guarantees, and union bounding failures of accuracy guarantees
numericSparse

Compose the repeated aboveThreshold algorithm with the Laplace Mechanism to return value of each above-threshold query
Claim: numericSparse is (ε, δ)-differentially private.
Theorem 3.28. For any sequence of k queries f_1, \ldots, f_k such that $L(T') \equiv |\{i : f_i(D) \geq T - \alpha\}| \leq c$, if $\delta > 0$, NumericSparse is (α, β) accurate for:

$$\alpha = \frac{(\ln k + \ln \frac{4c}{\beta}) \sqrt{c \ln \frac{2}{\delta}(\sqrt{512} + 1)}}{\epsilon}.$$

If $\delta = 0$, Sparse is (α, β) accurate for:

$$\alpha = \frac{9c(\ln k + \ln(4c/\beta))}{\epsilon}.$$