Blazing Fast 2PC in the Offline/Online Setting with Security for Malicious Adversaries∗

Yehuda Lindell† Ben Riva‡

October 12, 2015

Abstract

Recently, several new techniques were presented to dramatically improve key parts of secure two-party computation (2PC) protocols that use the cut-and-choose paradigm on garbled circuits for 2PC with security against malicious adversaries. These include techniques for reducing the number of garbled circuits (Lindell 13, Huang et al. 13, Lindell and Riva 14, Huang et al. 14) and techniques for reducing the overheads besides garbled circuits (Mohassel and Riva 13, Shen and Shelat 13).

We design a highly optimized protocol in the offline/online setting that makes use of all state-of-the-art techniques, along with several new techniques that we introduce. A crucial part of our protocol is a new technique for enforcing consistency of the inputs used by the party who garbles the circuits. This technique has both theoretical and practical advantages over previous methods.

We present a prototype implementation of our new protocol, which is also the first implementation of the amortized cut-and-choose technique of Lindell and Riva (Crypto 2014). Our prototype achieves a speed of just 7 ms in the online stage and just 74 ms in the offline stage per 2PC invoked, for securely computing AES in the presence of malicious adversaries (using 9 threads on two 2.9GHz machines located in the same Amazon region). We note that no prior work has gone below one second overall on average for the secure computation of AES for malicious adversaries (nor below 20ms in the online stage). Our implementation securely evaluates SHA-256 (which is a much bigger circuit) with 33 ms online time and 206 ms offline time, per 2PC invoked.

1 Introduction

Secure two-party computation enables a pair of parties with private inputs to compute a joint function of their inputs. The computation should maintain privacy (meaning that the legitimate output but nothing else is revealed), correctness (meaning that the output is correctly computed), and more. These properties should be maintained even if one of the parties is corrupted. The feasibility of secure computation was demonstrated in the 1980s, where it was shown that any probabilistic polynomial-time functionality can be securely computed [36, 14].

∗An extended abstract of this work appeared at ACM CCS 2015. This is the preliminary full version.
†Department of Computer Science, Bar-Ilan University, ISRAEL. Email: lindell@biu.ac.il, benr.mail@gmail.com. Supported by the European Research Council under the ERC consolidators grant agreement n. 615172 (HIPS), and by the BIU Center for Research in Applied Cryptography and Cyber Security in conjunction with the Israel National Cyber Bureau in the Prime Minister’s Office.
The goal of constructing efficient secure two-party (2PC) computation protocols in the presence of malicious adversaries has been an active area of research in the recent years. One of the most popular approaches for constructing such protocols is based on applying the cut-and-choose technique to Yao’s garbled-circuit protocol. In this technique, one of the parties prepares many garbled circuits, and the other asks to open a random subset of them in order to verify that they are correct. If yes, then the parties evaluate the remaining, unchecked circuits. This forces the party generating the garbled circuits to make most of them correct, or it will be caught cheating (solving perhaps the biggest problem in applying Yao’s protocol to the malicious setting, which is that an incorrect garbled circuit that computes the wrong function cannot be distinguished from a correct garbled circuit). Many different works 2PC protocols have been designed based on this approach [27, 23, 25, 33, 16, 22, 28, 34], and several implementations have been presented to study the concrete efficiency of it in practice (e.g., [31, 33, 20, 34, 2]). In this work we focus on the cut-and-choose approach.

The number of garbled circuits. Let \(s \) be a statistical security parameter such that the probability that a malicious party can cheat should be bounded by \(2^{-s} \) (plus a function that is negligible in \(n \), where \(n \) is the computational security parameter). Then, the exact number of garbled circuits needed for achieving this bound was reduced in the past years from \(17s \) [23], to approximately \(3s \) [25, 33], and recently to \(s \) [22].

In [17, 26], it was shown that if multiple 2PC executions are needed, then the amortized number of garbled circuits per 2PC can be reduced even below \(s \). Specifically, for \(N \) 2PC executions, only \(O\left(\frac{s}{\log N}\right) \) garbled circuits are needed per 2PC. In addition, [17, 26] present protocols that work in the online/offline setting, where most of the computation and communication intensive steps are carried out in the offline stage, resulting in a very efficient online stage. In [26], a tight analysis was presented showing that opening significantly less than half of the circuits (depending on the parameters) can yield very significant concrete efficiency improvements.

Checking input consistency and preventing selective OT attacks. Running cut-and-choose itself does not suffice for obtaining a secure protocol since it only deals with the correctness of the garbled circuits. To make the protocol secure, we must additionally include mechanisms for ensuring that the party that prepares the garbled circuits (a) uses the same input in all the evaluated garbled circuits, and (b) provides correct inputs to the OTs for the other party to learn the input labels for its input. We refer to the first problem as \(P_1 \)’s input consistency check and the second as preventing a selective OT attack. (We note that it is easy to ensure that the party \(P_2 \) who evaluates the garbled circuits uses the same input in all circuits, by running a single OT for each bit of \(P_2 \)’s input for all circuits being evaluated. We therefore do not refer to this problem further.)

It is possible to check the consistency of \(P_1 \)’s input using \(O(s^2) \) inexpensive (symmetric) cryptographic operations per input bit [27, 23], but this results in huge communication. Alternate solutions using \(O(s) \) exponentiations per input bit were presented in [25, 33]; this reduces the communication size while significantly increasing the computation time. Recently, [34, 28] presented solutions that require only \(O(s) \) inexpensive (symmetric) cryptographic operations per input bit, resulting in only a minor overhead on top of the cut-and-choose protocol itself (as it already requires \(O(s) \) gates per input bit).

Selective OT attacks can be prevented by using a special encoding of \(P_2 \)’s input so that the leakage of a small number of bits of the encoded input reveals nothing about the actual input [23, 34]. We discuss this solution in more detail in Section 2.3. An alternative solution (using cut-and-choose OT) was presented in [25], but this requires many exponentiations and so is not as efficient.
Implementations of cut-and-choose based 2PC. The first implementation which evaluated the cut-and-choose approach in practice was [31]. In [33, 34], implementations with additional algorithmic improvements were presented. Both results focus on reducing the overheads of the input-consistency checks, and work with approximately $3s$ garbled circuits for soundness 2^{-s}. In [20], the protocol of [33] is implemented using mass parallelism, resulting in a system that utilizes a cluster of several hundreds of machines in parallel. Parallelism was taken a step further in [12, 11], who designed and implemented protocols on GPUs.

The fastest published secure computation of AES based on cut-and-choose on garbled circuits, that we are aware of, in the single-execution, non-massively concurrent setting is of [2]. This implementation requires approximately 6.39 seconds for a single evaluation of AES. However, massive concurrency can drastically improve performance. Using several tens of machines (each with 8 CPU cores), AES can be computed in about 40.6 seconds for 1024 executions, with security parameter $s = 80$ [34]. Using GPUs, AES can be computed in only 0.46 seconds, for $s = 40$ [11].

1.1 Our Contributions

We start by presenting a new technique for checking that P_1 uses the same input in all (good) garbled circuits. Our method has both theoretical and practical advantages over previous techniques. Then, we describe an optimized protocol for 2PC in the online/offline setting, based on the protocol of [26]; our protocol uses our new consistency check, plus the state-of-the-art techniques for the other checks and additional small optimizations. We present a prototype implementation of our optimized protocol, which is the first implemented 2PC protocol based on the cut-and-choose method that requires less then s garbled circuits per 2PC computation. Last, we evaluate the prototype with different circuits and sets of parameters. We proceed to provide more details on each contribution.

New P_1's input consistency check. Previous techniques for ensuring that P_1 uses the same input in all good garbled circuits have significant disadvantages. The best known methods to date require $O(s)$ symmetric cryptographic operations per input bit, and are due to [28] and [34]. However, it is unclear how to use the technique of [34] in the online/offline setting (when many 2PC executions are needed), and the technique of [28] is (arguably) complicated and thus very difficult to implement.

Our new solution requires $O(s)$ symmetric cryptographic operations per garbled circuit, rather than per input bit; in most cases this is much smaller, and especially in the offline/online setting where the number of circuits per execution is very small (about 5-10 for typical parameters). In addition, our solution is very simple to describe and implement, and can be plugged-in in a modular way into most 2PC protocols (based on the cut-and-choose method), including the ones in the online/offline setting. Our protocol can be implemented using only standard cryptographic assumptions (at the expense of adding 2 exponentiations per circuit which is negligible in the overall cost) or in the random oracle model (in which case no exponentiations are needed). We remark that our new consistency check is the best option today, even for single-execution protocols.

Optimized protocol in the ROM. We apply the new technique for checking P_1's input consistency and the randomized encoding technique of [23] for protecting against selective OT attacks, to the protocol of [26] in the online/offline setting. We further optimize several parts of the protocol in the random-oracle model, including further elimination of exponentiations, reducing communication, and more.
The online stage of the protocol is highly efficient. It requires only four messages between the players and the overall communication size depends only on the input length and the security parameters. (Note that the online stage of the fastest 2PC implementation in the online/offline setting, shown in [29], requires a number of rounds that depends on the depth of the circuit in use, and its communication size depends on the circuit size.) This is the first implemented protocol with online communication that is independent of the circuit size (and is concretely very small, as shown by our experiments).

Prototype implementation and evaluation. We implemented our optimized protocol on top of the SCAPI library [10, 11]. Our prototype uses state-of-the-art techniques like AES-NI instructions, fixed-key garbling [5], and the optimized OT-extension protocol of [3]. We evaluated the prototype on Amazon AWS machines. Performance of the online stage itself is three orders of magnitude better than previous protocols (without massive parallelism). For example, evaluating the AES circuit between two machines in the same region costs only 7 ms in the online stage. Furthermore, the offline stage costs only 74 ms per 2PC computation (for some sets of parameters). Even when the parties communicate via the Internet, the cost of the online stage remains small as our protocol requires only four rounds of communication. Specifically, we evaluated AES in 160 ms with a network roundtrip of 75 ms (so at least 150 ms is spent on communication). Observe that the offline stage itself is very competitive when compared to previous results. In particular, the sum of both the offline and online stages is far better than any single execution reported (81 ms only). Thus, we do not obtain a fast online phase at the expense of a slow offline one. See Section 6 for more details and a comparison of our results with the performance of previous implementations.

2 Preliminaries

Let $H(\cdot)$ denote a hash function, and $\text{commit}(x)$ (resp., $\text{commit}(x, r)$) denote a commitment to x (resp., a commitment to x using randomness r). We denote by l the length of each party’s input, by $\ln(C, x)$ the set of wire indexes of a boolean circuit C that correspond to a given input x, and by $\text{Out}(C)$ the set of wire indices of the output wires of C.

2.1 Efficient Perfectly/Statistically-Hiding Extractable Commitment

Let $\text{ExtractCom}(m)$ be a perfectly- or statistically-hiding extractable commitment. We assume that in the first phase of the scheme the simulator generates a trapdoor td that enables immediate extraction of commitments later on. In Appendix A we review the perfectly-hiding extractable commitment of [21] that works in the standard model and is secure under the DDH assumption. In the random-oracle model, such a commitment is trivial; we just define $\text{ExtractCom}(m) = H(m; r)$ where r is random. Note that this is not perfectly hiding. However it is statistically hiding (in the random oracle model) to any algorithm who can make only a polynomial number of queries to H, and this suffices for our needs.

2.2 Adaptively-Secure Garbling

The standard security notion of garbled circuits (e.g., [24]) deals with a static adversary, meaning that the adversary picks its input before seeing the garbled circuit. However, in the online/offline setting, inputs are chosen only in the online stage, and if we wish to send all garbled circuits in the offline stage then the static security notion does not suffice. (Note that it is possible to only commit to the garbled circuits in the offline phase. However, in order to achieve the necessary security here,
the decommitment would be the same size as the circuit, resulting in significant communication.)

The security of garbled circuits in the presence of an adaptive adversary was defined in [6]; in this
definition, the adversary first gets the garbled circuit and only then chooses its input. As discussed
in [26], this allows proving security in the online/offline setting, even if all garbled circuits are sent
in the offline stage.

We use the method described in [26] that slightly modifies the fixed-key AES-NI garbling scheme
of [5] to be adaptively secure in the random-permutation model. Adaptive security is immediate in
the (programmable) random-permutation model if \(P_2 \) (the evaluator) chooses its input in a single
query. However, this is not true in case \(P_2 \) can obtain some valid input labels before all its input
bits are chosen (and therefore evaluate some of the gates before the input is fully determined). This
is a problem since the gates need to be “programmed” (in the random-oracle/random-permutation
model) after the inputs are received. This is solved by ensuring that \(P_2 \) is unable to decrypt any
gate before receiving all labels. We achieve this by having \(P_1 \) choose a random \(\lambda \) (of the same
length as the garbled labels), and whenever \(P_2 \) should learn a label for some input bit, it actually
learns the label XORed with \(\lambda \). After \(P_2 \) receives all the garbled values (XORed with \(\lambda \)), party \(P_1 \)
reveals \(\lambda \), and then \(P_2 \) can obtain its labels and evaluate the circuit. (The value of \(\lambda \) can be viewed
as part of the last label, which will be longer than the previous ones).

We recall the security game for an adaptively secure garbling scheme: Let \(\ell \) be the input length.
The challenger picks a coin \(b \). If \(b = 0 \) the adversary receives a valid garbled circuit, and if \(b = 1 \)
the simulator \(\text{Sim}(1, f) \) is run to generate a “fake” garbled circuit which is handed to the adversary.
Then, for \(i = 1, \ldots, \ell \), the adversary sends a bit \(x_i \) and receives its input label associated with
the \(i \)th input bit. If \(b = 0 \) then the input label is correctly generated, whereas if \(b = 1 \) then it is
generated by calling \(\text{Sim}(2, f, i, y) \), where \(y = \perp \) if \(i < \ell \) and \(y = f(x_1, \ldots, x_\ell) \) otherwise. The goal
of the adversary is to correctly guess \(b \) with probability greater than \(\frac{1}{2}\).

In order to prove security of our scheme described above (using \(\lambda \)), we need to specify the
computation of \(\text{Sim} \) and show that the probability that the adversary guesses \(b \) correctly is \(\frac{1}{2} + \text{neg}(|\lambda|) \). \(\text{Sim}(1, f) \) chooses a random string as the garbled circuit. Then, for \(i = 1, \ldots, \ell - 1 \),
\(\text{Sim}(2, f, i, y) \) chooses a random string for the input label. Finally, for \(i = \ell \), \(\text{Sim}(2, f, i, y) \) also
chooses a random \(\lambda \), and programs the random-oracle/random-permutation so that for the used set
of labels and the string that represented the garbled circuit, the garbled circuit is a fixed garbled
circuit that always returns \(y \). Observe that the distribution of the garbled circuit and the input
labels is the same in real game and the simulated one. The only case in which the adversary
can distinguish between the two is in case it guesses correctly one of the labels of the garbled
circuit (either of the input wires, or internal ones), and then notice the programming of the oracle.
However, in order to do that, the adversary must guess correctly some valid label or \(\lambda \), and both
happen with probability that is negligible in \(|\lambda| \).

2.3 The Solution of [23] for Selective-OT Attacks

A solution for the selective-OT attack, which works with any oblivious transfer in a black-box way,
was presented in [23]. The solution works by encoding \(P_2 \)'s input in a way that any leakage of a
small portion of the bits does not reveal significant information about \(P_2 \)'s input. Formally, the
encoding can be carried out using a Boolean matrix \(E \) that is \(s \)-probe-resistant, as defined below.

Definition 2.1 (Based on [23, 34]) Matrix \(E \in \{0,1\}^{\ell \times n} \) for some \(\ell, n \in \mathbb{N} \) is called \(s \)-probe-resistant for some \(s \in \mathbb{N} \) if for any \(L \subset \{1,2,\ldots,\ell\} \), the Hamming distance of \(\bigoplus_{i \in L} E_i \) is at least
\(s \), where \(E_i \) denotes the \(i \)-th row of \(E \).
In [23], it is shown that such a matrix E can be constructed with $n = \max(4\ell, \frac{20s}{3})$, where ℓ is P_2’s input length. Then, [34] show a different construction with $n \leq \lg(\ell) + \ell + s + s \cdot \max(\lg(4\ell), \lg(4s))$. For completeness, we describe these constructions in Figure 2.2. We note that both constructions can result in a matrix E for which there exists a vector y that for all vectors y', $Ey' \neq y$ (meaning that some input cannot be encoded). We therefore take E to be $[E'|I_\ell] \in \{0,1\}^{\ell \times (n+\ell)}$, where E' is an s-probe-resistant matrix and I_ℓ is the identity matrix of size ℓ. E is clearly also s-probe-resistant, and now, any vector y can be encoded using a vector y' that has random bits in the first n elements, and “corrections” in the rest of the bits so that $Ey' = y$.

FIGURE 2.2 (Generating s-probe-resistant matrix)

The construction of [23]:

- Set $n = \max(4\ell, \lceil\frac{20s}{3}\rceil)$.
- For $i = 1, \ldots, \ell$, let $E_i \in_R \{0,1\}^n$.
- Set E be the matrix in which its ith row is E_i.

The construction of [34]:

- Set $t = \lceil\max(\lg(4\ell), \lg(4s))\rceil$.
- Decrease t by one until $2^{t-1} > s + \frac{\lg(\ell) + \ell + s}{t-1}$.
- Set $k = \lceil(\lg(\ell) + \ell + s)/t\rceil$.
- For $i = 1, \ldots, \ell$, choose a random polynomial $P_i(x)$ of degree $k - 1$ over \mathbb{F}_{2^t} (e.g., by choosing at random its k coefficients), and let E_i be the concatenation of the values $P_i(1), P_i(2), \ldots, P_i(k + s - 1)$.
- Let E be the matrix in which its ith row is E_i. (Note that $n = t(k + s - 1)$.)

Instead of working with the function $f(x, y)$, the parties work with the function $f'(x, y') = f(x, Ey')$ and P_2 chooses a random $y' \in \{0,1\}^{n+\ell}$ such that $y = Ey'$ (this ensures that $f'(x, y') = f(x, y)$). As long as E is s-probe-resistant, even if P_1 learns $s' < s$ bits of y', it cannot learn any information about y. This is due to the fact that for every $s' < s$ bits of y' and every y, there exists a y'' that is consistent with them (i.e., $Ey'' = y$ and $y'' = y'$ on the $s' < s$ bits revealed). Now, in order to learn s bits, P_1 has to carry out a selective-OT attack on s wires (meaning that for s wires it provides one valid OT input and one invalid OT input, and if no abort occurs then it knows that the valid input was chosen). However, for every such wire it is caught with probability $1/2$, which means that if it tries to attack s wires, it gets caught with probability at least $1 - 2^{-s}$. In addition to working with $f'(x, y')$, the parties can use one OT invocation for many circuits, allowing P_2 to input the same y' for many circuits while learning the corresponding labels in all of them together. Therefore, the number of OTs needed is $n + \ell$ for the entire set of evaluated circuits.

As described in [34], since E is a binary matrix the subcircuit that computes Ey' can be garbled using only XOR gates. This is due to the fact that E is fixed (and known), and so multiplying a row of E with y' is the same as XORing a certain subset of y'’s bits together. This is therefore very efficient when using the Free-XOR technique [19]. Moreover, assuming correlation-robust hash functions, many OTs can be implemented very efficiently (i.e., with a small number of symmetric-key operations per OT) using an efficient OT extension protocol. Specifically, the above solution can be implemented with $O(n)$ symmetric-key operations, and only $O(s)$ seed-OTs [3].
2.4 Cut-and-Choose Parameters

The offline/online method for cut-and-choose uses the following parameters: (a) the number of circuits B evaluated per online 2PC; (b) the number of 2PC executions N; (c) the fraction of circuits evaluated p (and so a $1-p$ fraction are checked); and (d) the statistical security parameter s.

Note that the overall number of circuits used is NB, since after checking a $(1-p)$-fraction the number of circuits that remain are $\frac{NB}{p} - (1-p) \cdot \frac{NB}{p} = \frac{NB-\frac{NB}{p}+pNB}{p} = NB$, which is what is required to have B circuits per execution. A comprehensive analysis of the soundness of the amortized cut-and-choose, with respect to the above parameters, was presented by [26].

For completeness, we repeat the description of the cut-and-choose game in terms of balls and bins. From here on, a ball refers to a garbled circuit, and a cracked ball is an incorrect garbled circuit that was maliciously generated; a single execution in the online phase uses a full bucket of unchecked “balls”. Recall that in the cheating recovery method of [22] there are actually two garbled-circuit evaluations: the main circuit for computing the function is evaluated, and a very small auxiliary circuit is computed that is used for P_2 to learn P_1’s input in case P_1 cheated. The balls and bins game is such that for the main circuit the adversary can cheat if there exists a bucket where all the balls are cracked, and for the small cheating recovery circuit the adversary can cheat if there is a bucket where a majority of the balls are cracked.

P_2 chooses three parameters p, N and B, and sets $M = \left\lceil \frac{NB}{p} \right\rceil$ and $m = NB$. (Note that $p < 1$ and so $M > m$.) A potentially adversarial P_1 (who we will denote by Adv) prepares M balls and sends them to P_2. Then, party P_2 chooses at random a subset of the balls of size $M - m$; these balls are checked by P_2 and if one of them is cracked then P_2 aborts. Denote the balls that are not checked by $1, \ldots, m$. Then, P_2 chooses a random mapping function $\pi : [m] \rightarrow [N]$ that places the unchecked balls in buckets of size B.

In [26], bounds are proven for the probabilities that P_2 does not abort and (1) there exists a fully-cracked bucket (i.e., all balls in some bucket are cracked), or (2) there exists a majority-cracked bucket (i.e., at least $B/2$ balls in some bucket are cracked).

When considering multiple executions of protocols (as in [26]), the overall cheating probability is the natural soundness one should work with. However, we believe that is it preferable to focus on the cheating probability in a single 2PC execution since this enables a direct comparison to single-execution implementations. We will therefore be interested in the probabilities that P_2 does not abort and some specific bucket is fully cracked, or, that some specific bucket is majority-cracked.

In addition to the bounds shown in [26], a few concrete examples are presented there to exemplify that those bounds are not tight. Since we mostly care here about concrete efficiency, we implemented a program that finds the parameters analytically, based on the following tighter computations that are derived from the analysis of [26] (but are not informative within themselves).

Lemma 2.3 Let N, B, p, M be parameters as described above. The probability that a bucket is fully-cracked is at most

$$\max \left[\left(\frac{M-t}{NB-t} \right)^{NB} \cdot \left(\frac{t}{B} \left(\frac{NB}{B} \right)^{-1} \right)^{NB} \right]_{t=B}.$$

Lemma 2.4 Let N, B, p, M parameters as described above. The probability that a bucket is majority-cracked is at most

$$\max \left[\left(\frac{M-t}{NB-t} \right)^{NB} \cdot 2^{B-1} \left(\frac{t}{NB} \right)^{\left\lceil B/2 \right\rceil} \right]_{t=B}.$$

See Tables 1 and 2 for concrete examples of parameters computed according to Lemma 2.3.
3 Commitment with ZK Proof of Difference

The aim of this section is to construct a commitment scheme with an efficient zero-knowledge proof of difference. Given \(\text{commit}(x_1), \text{commit}(x_2) \) and \(\Delta = x_1 \oplus x_2 \), the aim is to efficiently prove that the XOR of the decommitments is indeed \(\Delta \). Formally, one party inputs \((x_1, x_2)\), and the other party chooses to either learn \(x_1 \oplus x_2 \) or the pair \((x_1, x_2)\) itself. (Thus, the first party is essentially committed to the pair, and must either decommit or prove their difference, depending on \(P_2 \)'s choice.) We will show later how it is used to prove \(P_1 \)'s input consistency. Our constructions are based on ideas of [32].

We start by describing a basic functionality (presented in Figure 3.1), prove its correctness, and then describe how to extend it to work with many commitments so we can use it for input-consistency checks.

![Figure 3.1](image)

FIGURE 3.1 (The Simple Commit-and-Difference Proof Functionality \(\mathcal{F}_{\text{Com}\Delta\text{ZK}} \))

\(\mathcal{F}_{\text{Com}\Delta\text{ZK}} \) runs with parties \(P_1 \) and \(P_2 \), as follows:

Input: \(\mathcal{F}_{\text{Com}\Delta\text{ZK}} \) receives a pair of messages \((x_1, x_2)\) from \(P_1 \), and a bit \(b \) from \(P_2 \).

Output:
- \(\mathcal{F}_{\text{Com}\Delta\text{ZK}} \) sends \(\Delta = x_1 \oplus x_2 \) to \(P_2 \) if \(b = 0 \); otherwise (if \(b = 1 \)), it sends \((x_1, x_2)\) to \(P_2 \).
- \(\mathcal{F}_{\text{Com}\Delta\text{ZK}} \) sends \(b \) to \(P_1 \).

3.1 A Warm-Up – Only Two Messages

In this section, we show how to securely realize the functionality from Figure 3.1. The basic idea for the construction is as follows: We define a split commitment of a value \(x \) to be a pair of commitments to random values whose XOR equals \(x \); i.e., \([\text{commit}(x \oplus r), \text{commit}(r)]\). Party \(P_1 \) sends \(P_2 \) a set of \(s \) split commitments to \(x_1 \) and \(s \) split commitments to \(x_2 \). If \(P_2 \) asks to decommit (i.e., \(b = 1 \)) then \(P_1 \) simply decommits using the standard (canonical) decommitment and \(P_2 \) checks that there exist \(x_1, x_2 \) such that the split commitments are as expected. In contrast, if \(b = 0 \), then \(P_1 \) sends \(P_2 \) the XORs of the split commitment values. Specifically, let \([\text{commit}(x_1 \oplus r_i), \text{commit}(r_i)]\) and \([\text{commit}(x_2 \oplus \rho_i), \text{commit}(\rho_i)]\) be the \(i \)th split commitment of \(x_1 \) and \(x_2 \), respectively. Then, \(P_1 \) sends \(\delta_i^0 = x_1 \oplus r_i \oplus x_2 \oplus \rho_i \) and \(\delta_i^1 = r_i \oplus \rho_i \) to \(P_2 \), for every \(i = 1, \ldots, s \), as well as \(\Delta = x_1 \oplus x_2 \). Observe that for every \(i \) it holds that \(\delta_i^0 \oplus \delta_i^1 = x_1 \oplus x_2 = \Delta \), and so \(P_2 \) checks that for every \(i \) it indeed holds that \(\delta_i^0 \oplus \delta_i^1 = \Delta \). Then, given these values, \(P_2 \) sends a random \(s \)-bit “challenge string” \(W \) to \(P_1 \), indicating to \(P_1 \) which value in each split commitment to open. Letting \(W = W_1, \ldots, W_s \), party \(P_1 \) decommits to both left commitments in the \(i \)th split commitments of \(x_1 \) and \(x_2 \) if \(W_i = 0 \); otherwise it decommits to both right commitments in the \(i \)th split commitments of \(x_1 \) and \(x_2 \). Observe that if \(W_i = 0 \) then \(P_2 \) receives \(x_1 \oplus r_i \) and \(x_2 \oplus \rho_i \) and so can verify that \(\delta_i^0 \) was correctly constructed. In contrast, if \(W_i = 1 \) then \(P_2 \) receives \(r_i \) and \(\rho_i \) and so can check that \(\delta_i^1 \) was correctly constructed. Thus, if \(x_1 \oplus x_2 \neq \delta \), then \(P_1 \) must cheat on at least one side of every split commitment, and so will be caught with probability \(1 - 2^{-s} \). Observe that this check is very simple and very efficient; when using a hash function to commit it requires \(2s \) hash computations only per value.

Despite its simplicity, we remark that in order to simulate this protocol (in the sense of securely computing Functionality \(\mathcal{F}_{\text{Com}\Delta\text{ZK}} \) in the ideal/real model paradigm), we need to have \(P_2 \) commit to its challenges \(b \) and \(W \) before the protocol begins. If an extractable commitment is used, then
the simulator can learn the challenges ahead of time and therefore appropriately prepare the commitment, even before Δ is known. Fortunately, this comes at very little overhead, as can be seen in the full protocol. See Figure 3.2 for the detailed protocol.

FIGURE 3.2 (Two Commitments with Proof of Difference)

Inputs: P_1 has a pair (x_1, x_2) and P_2 has a bit b.

Commit to Challenge: P_2 chooses a random $W \in \{0, 1\}^s$. Then, P_1 and P_2 run a perfectly (or statistically) hiding extractable commitment scheme ExtractCom (see Section 2.1), in which P_2 commits to b and W. (A Pedersen commitment with a zero-knowledge proof of knowledge of the committed value suffices, or a simple hash with a random string in the random oracle model.)

Commit to x_1, x_2: Define the split commitment $SCom(x, r) = [\text{commit}(x \oplus r), \text{commit}(r)]$. Then:

1. For $i = 1, \ldots, s$, P_1 chooses $r_i, \rho_i \leftarrow \{0, 1\}^n$ and computes $[c_i^0, c_i^1] = SCom(x_1, r_i)$ and $[d_i^0, d_i^1] = SCom(x_2, \rho_i)$.
2. Denote $c_1 = SC(x_1) = \langle [c_0^0, c_1^0], \ldots, [c_s^0, c_s^0]\rangle = \langle SCom(x_1, r_1), \ldots, SCom(x_1, r_s)\rangle$, and
 $c_2 = SC(x_2) = \langle [d_0^0, d_1^0], \ldots, [d_s^0, d_s^0]\rangle = \langle SCom(x_2, \rho_1), \ldots, SCom(x_2, \rho_s)\rangle$

P_1 sends $(\text{commit}, c_1, c_2)$ to P_2.

Decommit to b: P_2 decommits to the value b using the Decom procedure of ExtractCom. (At the end of the protocol, P_1 outputs b.)

If $b = 1$, **party P_1 decommits to x_1, x_2:** P_1 sends x_1, x_2 and all of the randomness used to generate the commitments c_1, c_2. P_2 verifies that all commitments were correctly constructed, and if yes it outputs (x_1, x_2).

If $b = 0$, **party P_1 provides a proof of difference:**

1. For every $i = 1, \ldots, s$, party P_1 defines $\delta_i^0 = x_1 + r_i + x_2 + \rho_i$ and $\delta_i^1 = r_i + \rho_i$ (note that $\delta_i^0 + \delta_i^1 = x_1 + x_2$).
2. P_1 sends $\{\{\delta_i^0, \delta_i^1\}\}_{i=1}^s$ and $\Delta = x_1 \oplus x_2$ to P_2, who checks that for every i it holds that $\delta_i^0 + \delta_i^1 = \Delta$.
3. P_2 decommits to W using the Decom procedure of ExtractCom. Denote $W = W_1, \ldots, W_s$.
4. For $i = 1, \ldots, s$, party P_1 decommits to $c_i^{W_i}, d_i^{W_i}$ to P_2.
5. For $i = 1, \ldots, s$, P_2 verifies that $\text{Decom}(c_i^{W_i}) \oplus \text{Decom}(d_i^{W_i}) = \delta_i^{W_i}$, where Decom denotes the standard decommitment.
6. If all checks pass, then P_2 outputs Δ.

Proving consistency. Before proceeding to prove security, we explain how this functionality can be used to force P_1 to use the same input in two different garbled circuits. The functionality $F_{\text{Com}\Delta\text{ZK}}$ is used for P_1 to commit to the *strings* of the signal bits associated with all P_1’s input bits. (Recall that the signal bit determines whether the keys on the wire are given in the “correct” order or reversed order. In some works this value is also called the permutation bit.) In this warm-up
case with two commitments, \(P_1 \) uses \(F_{\text{Com} \Delta \text{ZK}} \) to commit to the string of signal bits in the first garbled circuit and in the second garbled circuit (note that these are independent random strings, since each garbled circuit is independently generated). Now, \(P_1 \) provides (standard) commitments to the garbled values on these input wires (this is standard in all cut-and-choose protocols); we call them wire-commitments. However, \(P_1 \) provides the wire-commitments in the order determined by the signal bit (i.e., if the signal bit on a wire equals 0 then the commitment to the 0-key is placed before the commitment to the 1-key, and if the signal bit is 1 then they are reversed). Now, when two circuits are opened to be checked, then \(P_2 \) provides input \(b = 1 \) to \(F_{\text{Com} \Delta \text{ZK}} \), and so all values are decommitted. This enables \(P_2 \) to check that the split commitment was constructed correctly and that the wire-commitments were indeed given in the order determined by the signal bits. In contrast, when two circuits are to be evaluated, then \(P \) and that the wire-commitments were indeed given in the order determined by the signal bits. In fact, when two circuits are to be evaluated, then \(P \) and that the wire-commitments were indeed given in the order determined by the signal bits. In contrast, when two circuits are to be evaluated, then \(P \) and that the wire-commitments were indeed given in the order determined by the signal bits.

3.1.1 Proof of Security

Let \(x \in \{0,1\}^n \). Denote \(c \in SC(x) \) if there exists randomness so that \(c = SC(x) \); otherwise denote \(c \notin SC(x) \). Denote \(\mathcal{SC} = \{ c \mid \exists x : c = SC(x) \} \); i.e., the set of all valid split commitments. We will be interested in commitments \(c \in \mathcal{SC} \) versus series of 2s commitments that are not valid split commitments. Note that since \(\text{commit} \) is perfectly binding, the question of whether a series of 2s commitments are in \(\mathcal{SC} \) is well defined.

We will prove that the proof in Protocol 3.2 (in the case of \(b = 0 \)) is an interactive proof system for the promise problem \((P,Q) \), where

\[
P = \left\{ (c,d,\Delta) \mid \exists x_1, x_2 \text{ s.t. } c \in SC(x_1) \land d \in SC(x_2) \right\},
\]

and

\[
Q = \left\{ (c,d,\Delta) \mid \exists x_1, x_2 \text{ s.t. } c \in SC(x_1) \land d \in SC(x_2) \land x_1 \oplus x_2 = \Delta \right\}.
\]

The promise problem \((P,Q) \) considers the question of whether an input \((c,d,\Delta) \in Q \), under the promise that \((c,d,\Delta) \in P \). In words, we are given an input \((c,d,\Delta) \) and we are guaranteed that there exist \(x_1, x_2 \) such that \(c \in SC(x_1) \) and \(d \in SC(x_2) \). The “aim” is then just to determine if \(x_1 \oplus x_2 = \Delta \) or \(x_1 \oplus x_2 \neq \Delta \). (Note that if \(c \) and \(d \) are such that they are not valid commitments at all, then this will be detected in the checks carried out in the cut-and-choose protocol; i.e., when \(b = 1 \).)

We follow the definition of [13] regarding interactive proofs for promise problems. Informally, completeness must hold for every \((c,d,\Delta) \in P \cap Q \), soundness guarantees that the verifier will reject for any \((c,d,\Delta) \in P \setminus Q \), and nothing is required for \((c,d,\Delta) \notin P \).
In addition to the above, we prove that Protocol 3.2 securely computes the functionality \(F_{\text{Com} \Delta ZK} \), defined in Figure 3.1 in the presence of a corrupt \(P_2 \). We stress that in the case that \(P_1 \) is corrupted we rely on the soundness property of the proof (since Protocol 3.2 does not securely compute \(F_{\text{Com} \Delta ZK} \) in the presence of a corrupt \(P_1 \)).

We prove the following:

Theorem 3.3 If commit is a perfectly-binding commitment scheme and ExtractCom is a perfectly-hiding extractable commitment scheme, then the commitment phase of Protocol 3.2 is a perfectly-binding commitment scheme, and the proof phase is an interactive proof system for the promise problem \((P,Q)\) defined above. In addition, Protocol 3.2 securely computes \(F_{\text{Com} \Delta ZK} \) in the presence of a corrupt \(P_2 \).

Proof: The fact that \(SC \) is a perfectly-binding commitment scheme follows immediately from the fact that commit is perfectly binding. We proceed to prove that the proof is an interactive proof system for the promise problem \((P,Q)\). Completeness for the case that \((c,d,\Delta) \in P \cap Q\) is immediate. We next prove soundness. Let \((c,d,\Delta) \in P \setminus Q\). Then, there exist \(x_1, x_2 \) such that \(c \in SC(x_1) \) and \(d \in SC(x_2) \). However, \(x_1 \oplus x_2 \neq \Delta \). We show that \(P_2 \) accepts the proof with probability at most \(2^{-s} + \mu(n) \), for some negligible function \(\mu(\cdot) \). Let \(i \in [s] \). Since \(c \) and \(d \) are valid commitments, it holds that there exist \(r_i \) and \(\rho_i \) such that the \(i \)-th element in \(c \) is

\[
SCom(x_1, r) = [c_i^0, c_i^1] = [\text{commit}(x_1 \oplus r), \text{commit}(r)]
\]

and the \(i \)-th element in \(d \) is

\[
SCom(x_2, \rho) = [d_i^0, d_i^1] = [\text{commit}(x_2 \oplus \rho), \text{commit}(\rho)].
\]

Let \((\delta_i^0, \delta_i^1)\) be the pair sent by \(P_1 \) in the proof. If \(\delta_i^0 \oplus \delta_i^1 \neq \Delta \) then \(P_2 \) rejects the proof. Thus, it must be that \(\delta_i^0 \oplus \delta_i^1 = \Delta \). Observe that if \(\text{Decom}(c_i^0) \oplus \text{Decom}(c_i^1) = \delta_i^0 \) and \(\text{Decom}(c_i^1) \oplus \text{Decom}(d_i^1) = \delta_i^1 \), then \(x_1 \oplus r \oplus x_2 \oplus \rho = \delta_i^0 \) and \(r \oplus \rho = \delta_i^1 \), and thus \(\delta_i^0 \oplus \delta_i^1 = x_1 \oplus x_2 \neq \Delta \), in contradiction to the assumption above. Thus, we conclude that either \(\text{Decom}(c_i^0) \oplus \text{Decom}(d_i^1) \neq \delta_i^0 \) or \(\text{Decom}(c_i^1) \oplus \text{Decom}(d_i^1) \neq \delta_i^1 \). This holds for every \(i = 1, \ldots, s \).

Now, let \(W = W_1, \ldots, W_s \) be the random string chosen and committed to in the preprocess phase. Then, \(W \) is revealed only after \(\{(\delta_i^0, \delta_i^1)\}_{i=1}^s \) was sent by \(P_1 \) to \(P_2 \). Furthermore, the commitment is perfectly hiding. Thus, the commitment to \(W \) received by \(P_1 \) in the preprocessing phase reveals no information about \(W \), and so this is equivalent to \(W \) being chosen at random after the \(\{(\delta_i^0, \delta_i^1)\}_{i=1}^s \) were sent. By what we have shown, for every \(i \), it holds that either \(\text{Decom}(c_i^0) \oplus \text{Decom}(d_i^1) \neq \delta_i^0 \) or \(\text{Decom}(c_i^1) \oplus \text{Decom}(d_i^1) \neq \delta_i^1 \). Thus, for every \(i = 1, \ldots, s \) we have with probability at least \(1/2 \) (depending on where \(W_i = 0 \) or \(W_i = 1 \)) party \(P_2 \) catches \(P_1 \). Thus, the probability that \(P_2 \) aborts is at least \(2^{-s} \).

Secure computation of \(F_{\text{Com} \Delta ZK} \): It remains to prove that Protocol 3.2 securely computes \(F_{\text{Com} \Delta ZK} \) in the presence of a corrupted \(P_2 \). Let \(A \) be an adversary who has corrupted \(P_2 \). We begin by defining the simulator \(S \):

1. \(S \) interacts with \(A \) in the “Commit to Challenge” phase and obtains the trapdoor \(td \) that enables it to extract any committed value in the extractable commitment; see Section 2.1.

2. Using the trapdoor \(td \), \(S \) extracts \(b \) and \(W \).
3. \(S \) sends \(b \) to \(\mathcal{F}_{\text{Com}} \) (on \(P_2 \)'s behalf).

4. If \(b = 0 \),

- Upon receiving \(\Delta \) from \(\mathcal{F}_{\text{Com}} \), for \(k = 1, 2 \) the simulator \(S \) chooses \(2s \) independent random strings \(r^0_{k,1}, r^1_{k,1}, \ldots, r^0_{k,s}, r^1_{k,s} \); computes the commitments \(\{ (c^0_{k,i} = \text{commit}(r^0_{k,i}), c^1_{k,i} = \text{commit}(r^1_{k,i}) \}_i \) and defines \(c_k = \langle c^0_{k,1}, c^1_{k,1}, \ldots, c^0_{k,s}, c^1_{k,s} \rangle \). \(S \) hands \(A \) the message (commit, \(c_1, c_2 \)).
- For every \(i = 1, \ldots, s \), \(S \) chooses \(\delta^W_{k,i} = r^W_{k,i} \oplus r^W_{k+1,i} \) and sets \(\delta^1_{k,i} = \Delta \oplus \delta^W_{k,i} \). \(S \) hands \(\{ (\delta^0_{k,i}, \delta^1_{k,i}) \}_i \) to \(A \).
- \(S \) receives the decommitment of \(W \) from \(A \). If the decommitment is not valid, then \(S \) simulates \(P_1 \) halting, outputs whatever \(A \) outputs, and halts. If the decommitment is to a string \(W' \neq W \), then \(S \) outputs fail. Otherwise, \(S \) proceeds to the next step. Similar steps are executed with respect to the bit \(b \).
- For every \(i = 1, \ldots, s \), simulator \(S \) sends \(\text{Decom}(c^W_{k,i}), \text{Decom}(d^W_{k,i}) \); it can do this since it generated these commitments.

5. If \(b = 1 \), upon receiving \(x_1, x_2 \) from \(\mathcal{F}_{\text{Com}} \), the simulator \(S \) emulates an honest \(P_1 \) with inputs \(x_1, x_2 \). If \(A \) decommits to \(b' \neq b \), \(S \) outputs fail.

6. \(S \) outputs whatever \(A \) outputs and halts.

We now show that the view of \(A \) in the simulation with \(S \) is indistinguishable from its view in a real execution. First, note that \(S \) outputs fail with negligible probability since the commitments to \(b \) and \(W \) are computationally binding. In order to prove the simulation, we first consider a hybrid simulator \(S_1 \) who works in an ideal model in which it always receives \(x_1, x_2 \) from the trusted party. \(S_1 \) works in exactly the same way as \(S \) regarding the proof, but defines the commitment \(c \) by choosing \(r^W_1, \ldots, r^W_s \) at random and setting \(r^{W_1}_i = r^W_i \oplus x_k \), for every \(i = 1, \ldots, s \). Thus, unlike in the simulation with \(S \), here we have that \(c \in \text{SC}(x) \). In the proof, \(S_1 \) works exactly like \(S \).

We claim that the view of \(A \) when interacting with \(S_1 \) is computationally indistinguishable from its view when interacting with \(S \). This follows from a straightforward reduction to the hiding property of commit. Briefly, consider a commitment experiment where a bit \(b \in_R \{ 0, 1 \} \) is chosen at the onset. Then, the adversary interacts with a commitment oracle that receives pairs of length-\(n \) values, and returns a commitment to the first value if \(b = 0 \), and a commitment to the second value if \(b = 1 \). (This is an LR-oracle type formulation [4] and can be shown to be equivalent to standard computational hiding of commitments in a straightforward way.) The commitment adversary runs \(\mathcal{S}/S_1 \) and the trusted party (together with the commitment values). Upon receiving \(x_1, x_2 \), it chooses \(r^0_1, r^1_1, \ldots, r^0_s, r^1_s \) at random. Then, it computes the commitments \(c^W_i = \text{commit}(r^W_i) \) for every \(i = 1, \ldots, s \). In addition, it queries its commitment LR-oracle with the pair \((r^{W_1}_i, r^W_i \oplus x_k) \) and defines \(c^{-W_1}_i \) to be the response from the oracle. The commitment adversary proceeds exactly like \(\mathcal{S}/S_1 \) for the remainder of the simulation. Observe that it can carry out the proof since it needs to decrypt only the commitments \(c^W_i \) and \(d^W_i \), and it computed these itself. This completes the proof. \[\square \]
3.1.2 Replacing the Perfectly-Binding Commitment

Note that so far we have assumed that \(\text{commit}(\cdot) \) is a perfectly-binding commitment. In practice, perfectly-binding commitments are less efficient than computationally binding ones. For example, with an appropriate assumption on the cryptographic hash function, \(\text{commit}(x) = H(x; r) \) is a computationally binding and computationally hiding commitment. If we model \(H \) as a random oracle, then \(\text{commit} \) is still only computationally binding. However, it is extractable, and thus we can prove the interactive proof of Protocol 3.2 to be a proof of knowledge. This achieves the same effect as soundness. (Note that once we model \(H \) as a random oracle, we can also use \(\text{commit} \) as the statistically-hiding extractable commitment \(\text{ExtractCom} \).)

In order to use any computationally-binding commitments, including like that above but without resorting to the random oracle model, the following change can be made to Protocol 3.2. Let \(\sigma \) be a seed to a pseudorandom generator \(G \), and define \(SC(x) \) as before (i.e., \(SC(x) = \langle \text{SCom}(x, r_1), \ldots, \text{SCom}(x, r_s) \rangle \)) where the underlying commitment uses \(H \), but all of the randomness in generating \(SC \) is taken from \(G(\sigma) \), and a perfectly-binding extractable commitment is given to \(\sigma \) alone. This has the advantage that a single perfectly-binding commitment to a short string suffices to define all of \(SC \) as perfectly binding. The promise problem used to model the interactive proof, and the proof of soundness then remains the same (with the additional requirement that \(P_1 \) is polynomial time and cannot efficiently open any of the individual commitments to anything else). This adds one extractable commitment per circuit (which can be implemented via El Gamal and so costs 2 exponentiations per circuit), plus a single zero-knowledge proof of knowledge of the El Gamal private key generated by \(P_1 \) (that is done only once for all circuits and costs just 9 exponentiations).

3.2 Extending to Many Messages

The functionality of Figure 3.1 works with only two messages from \(P_1 \) (and so only for two circuits). We would like to use it for a larger number of messages, where \(P_2 \) can choose any subset of them to be revealed and learn the XOR differences between the remaining ones (as in the cut-and-choose case where a random subset of the circuits are evaluated and consistency must be proved for them). In addition, for our online/offline 2PC protocol we would like \(P_2 \) to be able to pick different subsets of the unrevealed messages, and learn the XOR differences for all the messages in each subset (since in the online/offline setting, the evaluated circuits are randomly thrown into buckets and each bucket is used for a different execution; thus the XOR differences are needed inside each bucket).

FIGURE 3.4 (The Extended Commit-and-Difference Proof Functionality \(\mathcal{F}_{\text{ExCom}\Delta{\text{ZK}}} \))

\(\mathcal{F}_{\text{ExCom}\Delta{\text{ZK}}} \) runs with parties \(P_1 \) and \(P_2 \), a public index \(M \) (saying how many inputs there are), a public constant \(N \) (saying how many subsets there are), and a public constant \(B \) (saying how big each subset is), as follows:

Input: \(\mathcal{F}_{\text{ExCom}\Delta{\text{ZK}}} \) receives \(M \) messages \((m_1, \ldots, m_M) \) from \(P_1 \), and a series of subsets \(I_1, \ldots, I_N \subset [M] \) from \(P_2 \).

Output: For \(j \in [N] \), let \(I_j = \{i^1_j, \ldots, i^B_j\} \) and let \(\Delta_j \) be the set \(\{m_{i^k_j} \oplus m_{i^{k+1}_j}\}_{k=1}^{B-1} \).

- \(\mathcal{F}_{\text{ExCom}\Delta{\text{ZK}}} \) sends \(\Delta_1, \ldots, \Delta_N \) to \(P_2 \). In addition, \(\mathcal{F}_{\text{ExCom}\Delta{\text{ZK}}} \) sends \(P_2 \) the value \(m_i \), for every \(i \notin \bigcup_{j=1}^N I_j \).
- \(\mathcal{F}_{\text{ExCom}\Delta{\text{ZK}}} \) sends \(I_1, \ldots, I_N \) to \(P_1 \).
The extended functionality is defined in Figure 3.4. The subsets I_1, \ldots, I_N are the buckets of circuits to be evaluated in the online phase (each bucket is of size B). Thus, P_2 learns the XOR differences between every pair in each bucket; this enables it to verify consistency as described above. Observe that the indices of values not in any of I_1, \ldots, I_N are circuits that are checked; thus, the values corresponding with these indices are revealed.

FIGURE 3.5 (Extended Commit with Proof of Difference – for a Single Subset I)

Commit to Indices and Challenge:

1. P_1 and P_2 run a *perfectly-hiding* (or *statistically-hiding*) extractable commitment scheme ExtractCom, in which P_2 commits to a key K for a PRG and to an s-bit random string W. (Pedersen commit with a ZK proof of knowledge of the committed value suffices.)
2. P_2 sends P_1 an encryption c of the indices i_1, \ldots, i_B of the single subset I by XORing them with the output of the PRF with key K.

Commit to m_1, \ldots, m_M: For every $m_k (k = 1, \ldots, M)$:
 1. Define the split commitment $SC(m_k, r) = [\text{commit}(m_k \oplus r), \text{commit}(r)]$
 2. For $i = 1, \ldots, s$, P_1 chooses $r_i \leftarrow \{0, 1\}^n$ and computes $[c_i^0, c_i^1] = SC(m_k, r_i)$
 3. Denote the commitment to m_k by $c_k = SC(m_k) = \langle SC(m_k, r_1), \ldots, SC(m_k, r_s) \rangle$.

P_1 sends $(\text{commit}, c_1, \ldots, c_M)$ to P_2.

Decommit to m_k:

1. P_1 sends $(m_k, r_1, \ldots, r_s, R_1^0, R_1^1, \ldots, R_s^0, R_s^1)$, where R_i^j is the randomness used to generate the commitment $\{c_i^j\}$ in $SC(m_k)$.
2. Upon receiving the above, P_2 verifies that $c_k = SC(m_k)$ is correctly constructed.

Proofs of Difference:

1. P_2 decommits to K, and P_1 decrypts c obtaining i_1, \ldots, i_B.
2. For $k = 1, \ldots, B - 1$:
 (a) Let r_1, \ldots, r_s be s.t. $SC(m_k) = \langle SC(m_k, r_1), \ldots, SC(m_k, r_s) \rangle$, and let η_1, \ldots, η_s be s.t. $SC(m_{k+1}) = \langle SC(m_k, \eta_1), \ldots, SC(m_k, \eta_s) \rangle$. Let $\Delta_k^i = m_k \oplus m_{k+1}$.
 (b) For every $i = 1, \ldots, s$, party P_1 defines $\delta_0^i = m_k \oplus r_i \oplus m_{k+1} \oplus \rho_i$ and $\delta_1^i = r_i \oplus \rho_i$ (note that $\delta_0^0 \oplus \delta_1^1 = m_k \oplus m_{k+1} = \Delta_k^i$)
 (c) P_1 sends $\{(\delta_0^0, \delta_1^1)\}_{i=1}^s$ and Δ_k^i to P_2, who checks that for every i, $\delta_0^i \oplus \delta_1^i = \Delta_k^i$.
3. P_2 decommits to W.
4. For $k = 1, \ldots, B - 1$:
 (a) For $i = 1, \ldots, s$, party P_1 sends $\text{Decom}(c_i^{W_1}), \text{Decom}(d_i^{W_1})$ to P_2, where $[c_i^0, c_i^1]$ is the ith commitment pair in $SC(x)$, and $[d_i^0, d_i^1]$ is the ith commitment pair in $SC(y)$.
 (b) For $i = 1, \ldots, s$, party P_2 verifies that $\text{Decom}(c_i^{W_1}) \oplus \text{Decom}(d_i^{W_1}) = \delta_i^{W_1}$.

The main difference between the protocol that securely computes the extended functionality in Figure 3.3 and the protocol in Figure 3.2 is that in the general case, P_2 commits to all of the subsets I_1, \ldots, I_N initially (and not just a single bit b). The detailed protocol appears in Figure 3.5, described for a single subset I input by P_2. Extending the protocol in Figure 3.5 to support multiple sets is straightforward; P_2 just sends a longer list of indices (instead of only B), ordered by the buckets they belong to. The proof of security follows directly from the proof of Theorem 3.3.
3.3 Using $F_{ExComAZK}$ in Cut-and-Choose

As we have mentioned, for every circuit in the cut-and-choose, P_1 commits to the string m which contains the “signal” bits σ on all of its input wires (this requires $2s$ basic commitments $commit$). In addition, the input garbled labels are committed: if $\sigma = 0$ then the commitments are in the correct order (with the 0 label first), and if $\sigma = 1$ they are in the opposite order (with the 1 label first). When checking a circuit, these commitments are also verified, including their order according to the signal bits as committed in $F_{ExComAZK}$. For the evaluation circuits, let gc_1, \ldots, gc_B be the circuits to be evaluated, and let m_1, \ldots, m_B be their committed signal bit labels. Then, for every $i = 1, \ldots, B$, party P_1 sends P_2 the string $\hat{x}_i = m_i \oplus x$, where x is its input to the secure computation, along with the decommitment to the labels pointed to by \hat{x}_i (the 0-label if the bit of $\hat{x}_i = 0$, and the 1-label otherwise). In addition, for every $i = 1, \ldots, B - 1$, it defines $\Delta_i = \hat{x}_i \oplus \hat{x}_{i+1}$ and proves that $m_i \oplus m_{i+1} = \Delta_i$ (using $F_{ExComAZK}$). Party P_2 uses the labels decommitted, and this ensures that the same input is used in all circuits in the bucket. This is because the functionality provides the XOR differences $\Delta_1 = m_1 \oplus m_2, \ldots, \Delta_{B-1} = m_{B-1} \oplus m_B$, and these differences are preserved even after XORing with the input. This means that the same x was XORed with m_1, \ldots, m_B and so the same value is used throughout. The overall cost is $2s$ basic commitments $commit$ per circuit plus two extractable commitments, which is very cheap (especially since the number of circuits per bucket is very small).

Advantages Over Previous Input Consistency Proofs. Note that the number of commitments in Protocol 3.2 is only $2s$ for every circuit. In the online/offline setting, the number of circuits is very small (typically 5-10, depending on the parameters) and thus this costs significantly less than a single commitment per input bit (unless the input is tiny). When $commit$ is implemented as described above using a computationally-binding commitment, the resulting protocol is more efficient than those of [28, 34], and significantly more simple to understand and implement. From a theoretical standpoint, our protocol can also be based on very standard assumptions (though with the additional negligible overhead of the two exponentiations needed by the El Gamal encryption used to implement a perfectly-binding commitment), whereas [28] requires correlation robustness and [34] requires Free-XOR. Our protocol yields significant improvements over [17, 26] who both use inefficient solutions for the input-consistency issue (i.e., using discrete-log ZK proofs).

4 Optimized 2PC in the Online/Offline Setting

We base our protocol on [26] who present a protocol for multiple 2PCs in the online/offline model. First, we adapt it to use the technique of [23, 28, 34] for protecting against selective-OT attacks, instead of using cut-and-choose OT which is much less efficient. Next, we plug in our new technique for checking P_1’s input consistency as discussed in Section 3.3. These two modifications essentially replace all the exponentiations required by the protocol of [26] for the input wires with cheaper cryptographic operations (and a small number of exponentiations that is independent of the input size).

Since our goal is to minimize the cost of the online stage, we chose to work in the random-oracle model, so we could construct adaptively secure garbled circuits in an efficient way. We therefore further utilize the power of the random-oracle model and optimize other parts of the protocol. For example, we replace all extractable commitments (that require exponentiations) with random-oracle
based commitments (that requires only hash function calls), and reduce the number of encryptions needed for the cheating recovery method presented in [26].

The protocol is described in Appendix B in Figures B.1 and B.4 and uses the sub-protocols of Figure B.2. Based on the proof of security from [26], we prove the following:

Theorem 4.1 Let commit and ExtractCom be implemented using a random oracle H (defined by $\text{commit}(m,r) = \text{ExtractCom}(m,r) = H(m;r)$), let PRF be a pseudorandom function, and let the garbling scheme be adaptively secure. Then, for any function f, Protocols B.1-B.4 securely compute f with multiple executions (according to the definition of [26]).

Proof Sketch: We follow the proof of [26] and present a proof sketch of Theorem 4.1. For each corruption case we provide some intuition about the simulation and then show indistinguishability of the real and the simulated executions via a sequence of hybrid executions.

P_1 is corrupted. The simulator emulates an honest P_2 with the following modifications. In the offline stage, it first extracts the seeds from and λs from $\text{ExtractCom}(\text{seed}_1), \ldots, \text{ExtractCom}(\text{seed}_M)$ and $\text{ExtractCom}(\lambda_1), \ldots, \text{ExtractCom}(\lambda_M)$. Second, it sees Adv’s messages to $F_{\text{Com}\Delta ZK}$. At the end of the offline stage, the simulator can determine if there exists a bucket in which none (or most) of the bundles is good (e.g., the garbled circuit is invalid). If so, the simulator aborts. (Note that this event could happen with only a negligible probability because of the cut-and-choose protocol.)

In the online stage, the simulator emulates an honest P_1 with a random input y and learns Adv’s input to the good bundles. (Recall that the simulator saw Adv’s messages to $F_{\text{Com}\Delta ZK}$, thus it knows the signal bits of the good bundles.) It sends this input to the ideal functionality as P_1’s input. It emulates the protocol until its end (emulating abort if needed) and outputs whatever Adv outputs.

Before we describe in more details the hybrids, we reduce the security of the protocol, denoted by Π, to the security of protocol Π' in which P_2 generates the random mapping functions with truly random coins (instead of pseudo-random ones) and commits to the functions instead of the PRF seeds. Let Π'' be a protocol in which P_2 uses a PRF to derive the coins needed for generating the random mapping functions, but then commits to the functions instead of the PRF seeds. Since those commitments are done using ExtractCom, any adversary that can cheat in Π can also cheat in Π''. On the other hand, any adversary that can cheat in Π'' can also cheat in Π' or else we get a distinguisher for the PRF security game. Therefore, any adversary in Π can also cheat in Π' except for a negligible probability.

We proceed to proving that Π' is secure. We show indistinguishability of the real execution and the simulated one using the following hybrid executions:

- The real execution.
- The simulator Sim emulates an honest P_2 with the real inputs and realizes the ideal functionalities for Adv. It see all Adv’s messages to the OTs, $F_{\text{Com}\Delta ZK}$, and the random-oracle. Indistinguishability follows the composition theorem.

1We are aware that the proof is far from satisfactory, even as a proof sketch, and that the protocol specification needs to be significantly improved. We hope to carry out this work in the near future.
Sim aborts if at the end of the offline stage there exists a bucket that is fully-cracked with respect to \(C \) or majority-cracked with respect to \(C' \). (This abort is in addition to the abort that an honest \(P_2 \) might do in case it detects cheating.) Following Lemmas 2.3 and 2.4 this abort happens with a negligible probability.

Sim emulates \(P_2 \) with a random input in the online stage, learns \(\text{Adv}'s \) input to the good bundles, and sends it to the ideal functionality. (Observe that there exists exactly one input in all good bundles.) It sends \texttt{abort} if the emulated \(P_2 \) aborts, and otherwise outputs whatever \(\text{Adv} \) outputs. Note that this execution differ only in \(P_2 \)'s input. However, since \(P_2 \)'s input is encoded using an \(s \)-resistance matrix, \(\text{Adv} \) has no information about the value \(y^{(1)} \) that \(P_2 \) has used in the offline stage, so the masking of \(y \) with \(y^{(1)} \) completely hides \(y \) (except for the negligible probability for which \(\text{Adv} \) has learned \(s \) input bits of \(y^{(1)} \) using selective-OT attack). Additionally, for the good bundles, \(P_2 \) evaluations with the real input should return the same output as the ideal functionality, thus, the output of \(P_2 \) in this execution would be the same as in the previous one.

The last hybrid execution is essentially the simulated execution since the simulator does not use the real input \(y \), so in conclusion, the real and the simulated executions are indistinguishable.

\(P_2 \) is corrupted. In the offline stage, the simulator emulates an honest \(P_1 \) and extracts the values of \(\sigma \) and \(\text{seed}_x \) of the cut-and-choose for \(C \) and for \(C' \) (by utilizing the extractability of \(\text{ExtractCom}/\text{random-oracle} \)). It constructs good garbled-circuit bundles for the ones that are chosen to be checked, but uses fake ones for the bundles that are chosen to be evaluated. In addition, the simulator sees \(\text{Adv}'s \) inputs to the OTs, and by that, learns the values of \(y^{(1)}_1, \ldots, y^{(1)}_N \), and \(d^{(1)}_1, \ldots, d^{(1)}_N \).

In the online stage, for the current bucket, the simulator gets \(y^{(2)}_1, \ldots, y^{(2)}_N \) and uses that to recover \(y \). It sends it to the ideal functionality and receives the output \(z \). Then, it causes the garbled circuits to always output \(z \) (using the simulator of the adaptive garbled circuit). It continues the execution with a random input \(x \) and outputs what \(\text{Adv} \) outputs.

We show indistinguishability of the real execution and the simulated one using the following hybrid executions:

- The real execution.

- The simulator \(\text{Sim} \) emulates an honest \(P_1 \) with the real inputs and realizes the ideal functionalities for \(\text{Adv} \). It see all \(\text{Adv}'s \) messages to the OTs, \(\mathcal{F}_{\text{Com}\Delta\text{ZK}} \), and the random-oracle. Indistinguishibility follows the composition theorem.

- Once \(\text{Adv} \) sends \(y^{(2)}_1, \ldots, y^{(2)}_N \) in the online stage, \(\text{Sim} \) computes \(y \), sends it to the ideal functionality and receives the output \(z \). Then, \(\text{Sim} \) programs the commitments of the input wire label that \(\text{Adv} \) has not learnt so that they will be commitments to zeros, and in addition, it sets the garbled circuits to be fake garbled circuits that always output \(z \). Because of the adaptive security of the garbling scheme, and since \(\text{Adv} \) might catch the modification of the random-oracle with only a negligible probability, this execution is indistinguishable from the previous one.

- \(\text{Sim} \) aborts if \(\text{Adv} \) sends \(d^{(2)}_1, \ldots, d^{(2)}_N \) such that \(d^{(2)}_1 = D \oplus d^{(1)}_1 \). Note that at this stage, the only information about \(D \) comes from \(H(D) \), so if \(\text{Adv} \) knows it, we can use it
to break the one-wayness of H (i.e., we receive $H(D)$ in the one-wayness game, and use Adv to recover it.) Therefore, this abort happens with only a negligible probability.

- **Sim** modifies the garbled circuits of the cheating recovery circuits, causing them to always output 0. Since at this stage, Adv does not input the correct value D to the circuit, it should always learn 0, and thus this execution is indistinguishable from the previous one following the security of the garbling scheme.

- **Sim** uses the a random input on P_1’s behalf. Note that Adv knows only the XORs of the signal bits, but does not know their actual values for the evaluated circuits. Therefore, x_1 is distributed exactly the same as in the previous execution. (Since we use the random-oracle for the commitments of P_1’s input wire labels, we can program them so that their decommitments are distributed the same as well.)

The last hybrid execution is essentially the simulated execution since the simulator does not use the real input y, so in conclusion, the real and the simulated executions are indistinguishable. ■

We remark that the protocol can be slightly modified to be secure given an adaptively secure garbling scheme and without utilizing the random oracle for commit and ExtractCom. The only modification needed is to commit ro all the commitments of the input labels using a trapdoor (equivocal) commitment, so that in the simulation in case P_1 is corrupted, the simulator can change the commitments on the input labels after it learns P_1’s input. The cost of this modification is small, requiring only one additional trapdoor commitment per garbled circuit.

5 Prototype Implementation

Our goal is to provide an end-to-end system for multiple 2PC executions in the online/offline setting. First, the system includes a tool for providing the user with very good sets of parameters (in the offline/online setting, finding the parameters of how many circuits to use and how many to open for a given security parameter, is complex). Next, the system is optimized both crypto-wise (e.g., using the random-oracle where suitable) and engineering-wise (e.g., using parallelism where possible). Some key parts of the system are the following:

Additional optimizations in the random-oracle model. First, recall that everywhere we use an extractable commitment, we actually use $\text{commit}(x; r) = H(x; r)$. Second, since the labels of P_2’s input wires are random, we can use a second random-oracle H_2, and ask P_1 to commit to label W by just sending $H_2(W)$. This reduces the length of P_1’s inputs to the OTs by a factor of two (since the decommitment includes only W and not additional randomness), thereby reducing bandwidth. This still preserves security as $H_2(W)$ does not reveal any information about W if W has enough entropy (which happens in our case, as W is at least 128 bits long random string).

Finding good parameters. We implemented a program that is given the values of s (statistical security parameter) and N (the overall number of executions desired), and calculates the parameters based on Lemmas 2.3 and 2.4 that minimize the overall number of circuits (to minimize the run-time of the offline stage) or the number of evaluation circuits per bucket (to minimize the run-time of the online stage). Similarly to what was observed by [26], the parameters we obtain by directly computing the equations found in Lemmas 2.3 and 2.4 are much better than the (clean) upper
bounds proven in [26]. See Tables 1 and 2 for several example sets of generated parameters. We also implemented a program that receives a circuit \(C \) and calculates the encoding matrices \(E \) and \(E' \), used for protecting \(P_2 \)'s input from selective-OT attacks (as described in Section 2.3).

<table>
<thead>
<tr>
<th>(N)</th>
<th>Total number of circuits overall</th>
<th>Number of eval circuits per 2PC (online phase)</th>
<th>Number of circuits per 2PC</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>136</td>
<td>10</td>
<td>16.95</td>
</tr>
<tr>
<td>165</td>
<td>8</td>
<td>20.51</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>362</td>
<td>7</td>
<td>11.29</td>
</tr>
<tr>
<td>437</td>
<td>6</td>
<td>13.63</td>
<td></td>
</tr>
<tr>
<td>128</td>
<td>998</td>
<td>6</td>
<td>7.79</td>
</tr>
<tr>
<td>1143</td>
<td>5</td>
<td>8.92</td>
<td></td>
</tr>
<tr>
<td>1024</td>
<td>5627</td>
<td>5</td>
<td>5.49</td>
</tr>
<tr>
<td>5689</td>
<td>4</td>
<td>5.55</td>
<td></td>
</tr>
<tr>
<td>4096</td>
<td>18005</td>
<td>4</td>
<td>4.39</td>
</tr>
<tr>
<td>25600</td>
<td>3</td>
<td>6.25</td>
<td></td>
</tr>
</tbody>
</table>

Table 1: Several sets of parameters for Lemma 2.3 with \(s = 40 \). Note the tradeoff between the total number of circuits (which affects the offline stage efficiency) and the number of evaluation circuits per bucket (which affects the online stage efficiency).

<table>
<thead>
<tr>
<th>(N)</th>
<th>Total number of circuits overall</th>
<th>Number of eval circuits per 2PC (online phase)</th>
<th>Number of circuits per 2PC</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>277</td>
<td>19</td>
<td>34.54</td>
</tr>
<tr>
<td>296</td>
<td>17</td>
<td>36.95</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>706</td>
<td>15</td>
<td>22.05</td>
</tr>
<tr>
<td>771</td>
<td>13</td>
<td>24.07</td>
<td></td>
</tr>
<tr>
<td>128</td>
<td>1995</td>
<td>12</td>
<td>15.58</td>
</tr>
<tr>
<td>2246</td>
<td>10</td>
<td>17.54</td>
<td></td>
</tr>
<tr>
<td>1024</td>
<td>10843</td>
<td>9</td>
<td>10.58</td>
</tr>
<tr>
<td>4096</td>
<td>36294</td>
<td>7</td>
<td>8.86</td>
</tr>
</tbody>
</table>

Table 2: Several sets of parameters for Lemma 2.3 with \(s = 80 \).

In contrast to [26], we have set the statistical security parameter \(s \) to be such that the probability that an adversary cheats in a single 2PC execution is \(2^{-s} \). (In [26], they set \(2^{-s} \) to be the probability that an adversary cheats in at least one of the many executions overall). Indeed, this is merely a different way of looking at the parameters, but we believe that for most users, considering security of a single execution is more natural.

Handling large inputs. Calculating a probe-resistant matrix according to the algorithm of [34] is a very computationally intensive task when the input is large (e.g., 1000-bit long). Instead, when dealing with long inputs, our system constructs the probe-resistant matrix using a composition of smaller probe-resistant matrices that can each be generated very efficiently. While this method
results in a slightly larger matrix used in the protocol (and, thus, more OTs), it dramatically reduces the time needed for generating the probe-resistant matrix (from hours to seconds).

Architecture. We use the SCAPI library [10, 1] for implementing the high-level steps of the protocols, while using more optimized C/C++ code for steps that are more computationally intensive (e.g., computing the large amount of XORs of the probe-resistant matrix). We use the OT-extension implementation of [3], a new SCAPI garbling library that uses fixed-key AES for garbling, as suggested by [5], and the SCAPI wrapper of OpenSSL for AES and SHA-1.

The prototype is able to generate and evaluate many garbled circuits (and carry out other operations) in parallel, using multiple threads. In addition, before the online stage begins, all relevant files are loaded to memory so that no I/O delays occur once the interaction starts. (We do not include disk I/O time in our measurements as in practice loading to memory should always occur before actual inputs are received.)

The code for the prototype is freely available from the SCAPI project git [1].

6 Performance Evaluation

Setup. We ran the prototype implementation on two types of Amazon AWS instances: c4.8xlarge (with 64GB RAM and 36 virtual 2.9GHz CPUs) and c4.2xlarge (with 15GB RAM and 8 virtual 2.9GHz CPUs). On both instances, garbling 1000 AES circuits in isolation took about 470 ms. Unless stated otherwise, all the tests in this section were ran on the c4.8xlarge instances. We ran tests with *LAN configuration*, where both parties were in the same AWS region and the roundtrip is less than 1 ms, and with a *WAN configuration*, where the parties were in different regions (specifically, EU-west and US-east) and the roundtrip is 75 ms.

Test functions. We tested the prototype with the following circuits:

1. **ADD:** receives two 32-bit integers and outputs their sum (the circuit has 127 AND gates)
2. **AES:** receives two 128-bit inputs and outputs the encryption of the first input using the second input as the key (the circuit has 6800 AND gates)
3. **SHA-1:** receives two 256-bit inputs and outputs the SHA-1 hash digest of the XOR of the two inputs (the circuit has 37300 AND gates)
4. **SHA-256:** receives two 256-bit inputs and outputs the SHA-256 hash digest of the XOR of the two inputs (the circuit has 90825 AND gates)

We remark that smaller circuits exist for some of these tasks. However, our goal was not the computation of these functions per se, but rather measurements over different sized circuits.

Results. In the following, all experiments use the sets of parameters from Tables 1 and 2, and unless said otherwise, $s = 40$. See Table 3 for the results of the implementation on these circuits; the online time given is the average over all executions. We can see that, for example, the total amortized time it takes to evaluate a single AES (i.e., the sum of the online and offline stages timings) ranges from around 210ms (for $N = 32$) to around 80ms (for $N = 1024$). See Table 4 for results with $s = 80$; the cost with $s = 80$ is 2-3 times the cost of $s = 40$ and so is also very fast.
Table 3: Running times of the different circuits in LAN configuration (in ms). For $N = 32$ we use buckets of 7 circuits of C and 20 of C'; for $N = 128$ we use buckets of 6 circuits of C and 14 of C'; for $N = 1024$ we use buckets of 4 circuits of C and 10 of C' (C is the main circuit and C' is the auxiliary cheating-recovery circuit). Offline times are for execution with 9 threads.

<table>
<thead>
<tr>
<th>Circuit</th>
<th>Number of buckets</th>
<th>Offline total</th>
<th>Offline per bucket</th>
<th>Online time per bucket</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>1 thread</td>
<td>5 threads</td>
</tr>
<tr>
<td>ADD</td>
<td>32</td>
<td>4266</td>
<td>133</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>128</td>
<td>9735</td>
<td>76</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>1024</td>
<td>49590</td>
<td>48</td>
<td>5</td>
</tr>
<tr>
<td>AES</td>
<td>32</td>
<td>6310</td>
<td>197</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>128</td>
<td>14539</td>
<td>114</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>1024</td>
<td>75879</td>
<td>74</td>
<td>9</td>
</tr>
<tr>
<td>SHA-1</td>
<td>32</td>
<td>10042</td>
<td>314</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>128</td>
<td>24201</td>
<td>189</td>
<td>31</td>
</tr>
<tr>
<td></td>
<td>1024</td>
<td>127555</td>
<td>125</td>
<td>20</td>
</tr>
<tr>
<td>SHA-256</td>
<td>32</td>
<td>14699</td>
<td>459</td>
<td>75</td>
</tr>
<tr>
<td></td>
<td>128</td>
<td>35243</td>
<td>275</td>
<td>62</td>
</tr>
<tr>
<td></td>
<td>1024</td>
<td>210935</td>
<td>206</td>
<td>44</td>
</tr>
</tbody>
</table>

Table 4: Running times for AES circuit in LAN configuration for $s = 80$. For $N = 32$ we use buckets of 15 circuits of C and 46 of C'; for $N = 128$ we use buckets of 12 circuits of C and 28 of C'; for $N = 1024$ we use buckets of 9 circuits of C and 20 of C'.

<table>
<thead>
<tr>
<th>Circuit</th>
<th>Number of buckets</th>
<th>Offline total</th>
<th>Offline per bucket</th>
<th>Online time per bucket</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>1 thread</td>
<td>5 threads</td>
</tr>
<tr>
<td>AES</td>
<td>32</td>
<td>13901</td>
<td>434</td>
<td>52</td>
</tr>
<tr>
<td></td>
<td>128</td>
<td>35031</td>
<td>274</td>
<td>34</td>
</tr>
<tr>
<td></td>
<td>1024</td>
<td>164937</td>
<td>161</td>
<td>24</td>
</tr>
<tr>
<td>SHA-256</td>
<td>32</td>
<td>29041</td>
<td>908</td>
<td>176</td>
</tr>
<tr>
<td></td>
<td>128</td>
<td>74120</td>
<td>579</td>
<td>129</td>
</tr>
<tr>
<td></td>
<td>1024</td>
<td>662640</td>
<td>647</td>
<td>100</td>
</tr>
</tbody>
</table>

Table 5: Running times of the offline stage for the AES circuit in LAN configuration (in ms) for $s = 40$. (For $s = 80$, the times are 2-2.5 larger.) The number of circuits per bucket is as in Table 3.

<table>
<thead>
<tr>
<th>Number of buckets</th>
<th>Offline total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 thread</td>
</tr>
<tr>
<td>32</td>
<td>10129</td>
</tr>
<tr>
<td>128</td>
<td>23961</td>
</tr>
<tr>
<td>1024</td>
<td>125993</td>
</tr>
</tbody>
</table>
In Table 5, we show an example of the effect of the number of threads on the *offline* stage performance. Even though performance is far from linear in the number of threads, it is clear that parallelism helps, and we expect that further optimizations utilizing multithreading will further improve performance. We also ran these experiments for other settings and verified that this effect is consistent.

As discussed earlier, there is a tradeoff between the total number of circuits and the number of evaluation circuits per online stage. This affects the performance of the two stages. See Tables 1 and 2 for examples of those tradeoffs. In addition to the tests described in Table 5, we also tested how this tradeoff is reflected in practice: Instead of running AES with $s = 80$, $N = 128$ and bucket size 12, we ran it with bucket size 10 which increases the total number of circuits from 1995 to 2246. The result was that the offline running time was 310 ms per 2PC (with 9 threads) and the online running time was 31/16/17 ms for 1/5/9 threads (respectively). This is about 13% slower in the offline phase and around 10% faster in the online phase, which roughly matches the differences in the numbers of circuits and so is as expected. Thus, it is possible to obtain different tradeoffs, depending on whether it is more important to reduce the overall cost or the online latency.

We also tested the prototype in the WAN configuration, since in many real-world scenarios the participating parties may be far apart. Note that in these scenarios, the Yao-based approach has a significant advantage over TinyOT [29] and SPDZ [7] who have a number of rounds that depends on the circuit depth. See Tables 6, 7 and 8 for the results of those tests.

<table>
<thead>
<tr>
<th>Circuit</th>
<th>Number of buckets</th>
<th>Offline total</th>
<th>Offline per bucket</th>
<th>Online time per bucket</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1 thread</td>
</tr>
<tr>
<td>AES</td>
<td>32</td>
<td>36039</td>
<td>1126</td>
<td>171</td>
</tr>
<tr>
<td></td>
<td>128</td>
<td>117650</td>
<td>919</td>
<td>166</td>
</tr>
<tr>
<td></td>
<td>1024</td>
<td>778235</td>
<td>759</td>
<td>162</td>
</tr>
<tr>
<td>SHA-1</td>
<td>32</td>
<td>52463</td>
<td>1639</td>
<td>194</td>
</tr>
<tr>
<td></td>
<td>128</td>
<td>152509</td>
<td>1191</td>
<td>194</td>
</tr>
<tr>
<td></td>
<td>1024</td>
<td>2936775</td>
<td>2867</td>
<td>184</td>
</tr>
</tbody>
</table>

Table 6: Running times of AES and SHA-1 in WAN configuration using the parameters of Table 3 (in ms) for $s = 40$. The roundtrip between the parties was 75 ms.

<table>
<thead>
<tr>
<th>Circuit</th>
<th>Number of buckets</th>
<th>Offline total</th>
<th>Offline per bucket</th>
<th>Online time per bucket</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1 thread</td>
</tr>
<tr>
<td>AES</td>
<td>32</td>
<td>54467</td>
<td>1702</td>
<td>204</td>
</tr>
<tr>
<td></td>
<td>128</td>
<td>165239</td>
<td>1291</td>
<td>190</td>
</tr>
<tr>
<td></td>
<td>1024</td>
<td>1102191</td>
<td>1076</td>
<td>178</td>
</tr>
<tr>
<td>SHA-1</td>
<td>32</td>
<td>89860</td>
<td>2808</td>
<td>268</td>
</tr>
<tr>
<td></td>
<td>128</td>
<td>314239</td>
<td>2455</td>
<td>236</td>
</tr>
<tr>
<td></td>
<td>1024</td>
<td>1412681</td>
<td>1380</td>
<td>213</td>
</tr>
</tbody>
</table>

Table 7: Running times of AES and SHA-1 in WAN configuration using the parameters of Table 4 (in ms) for $s = 80$. The roundtrip between the parties was 75 ms.
Table 8: Running times of the offline stage for the AES circuit in WAN configuration (in ms) for $s = 40$. (For $s = 80$, the costs at most twice larger.)

We note that our online phase requires four rounds of interaction (two messages in each direction), and since the roundtrip in our WAN configuration is 75 ms, the cost of our online stage cannot go below 150 ms. Our tests show that in this case, the majority of the time spent is on communication, and the cost of the actual steps of our protocol (i.e., excluding communication) is very low. We remark that protocols which require a round of communication for every level of the circuit in the online phase will perform poorly in this scenario. For example, the best AES circuit has depth 50 and thus the online time will not be able to be less than 3750 ms in this setting, even if each step in the protocol has almost zero cost and only a few bits are sent.

Last, we tested the prototype on a weaker AWS instance, i.e., c4.2xlarge, for computation of AES. See Table 9. As expected, performance is mostly worse than on the stronger instance but for some parameters they are still very close. This is mainly because of memory issues, and thus is mostly reflected in the offline stage (our current implementation of the offline stage stores many garbled circuits in memory). Indeed, the online times are almost the same.

Table 9: Running times of AES (in ms) in LAN configuration using the parameters of Table 3 on c4.2xlarge instances. (The costs for $s = 80$ are about 2-3 times larger.)

Communication in the offline stage consists mostly of the garbled circuits, whereas the communication in the online stage is very small. For example, for AES computation with $s = 40$ and $N = 32$, about 260MB are transmitted in the offline stage and only about 312KB per online execution; for $N = 128$, about 698MB are transmitted in the offline stage and only about 238 KB per online execution; for $N = 1024$, about 3850MB are transmitted in the offline stage and less than 170KB in the online stage. (Recall that the number of circuits per bucket is larger for $N = 32$ than for $N = 128, 1024$, and thus the communication in the online stage is larger.) For $s = 80$, these numbers are about double, as expected since the number of circuits is about double.

Comparison with related work. We focus here on comparing our results with the ones reported by previous works. We leave the comprehensive benchmarking of all relevant protocols using similar hardware, network configuration, and so on to future work.

As discussed in Section 1, the fastest previously published implementation of cut-and-choose based 2PC on standard machines (without massive parallelism) is of [2] which requires more than
6 seconds for a single secure computation of AES. In, [34, 11], it is shown how to reduce costs drastically using massive parallelism, requiring only several tens of ms per 2PC invoked. Our protocol works in the online/offline setting, while [2, 11] work in the single-execution setting and [34] works in the batch setting. The online/offline setting has great applicability. Our work demonstrates that in this setting, it is possible to carry out secure two-party computation with security for malicious adversaries with efficiency that is several orders of magnitude less than previous non-massively parallel implementations, and has the potential to cost much less in the massively parallel setting (since all the expensive steps of the protocol can be done in parallel). We stress that the offline/online setting is preferable to the batch setting since online executions can be run in isolation.

Different 2PC protocols, that are not based on the cut-and-choose technique for garbled circuits, are presented in [29] and [7]. Both protocols have an offline stage in which the parties work independently of their inputs, and a much shorter online stage in which the players use their inputs and compute the function of interest. The cryptographic work required by these protocols during the online stage is very small (if any). However, both protocols require a number of interaction rounds that depends on the depth of the circuit being evaluated.

The overall online stage of [29] costs 4 seconds (for a single computation) for computing AES, while the amortized offline time is at least 1 second (even for many computations). For many computations (135), the total online time is 15 seconds. This gives an amortized time of just 111ms, but high latency. The average total running time (i.e., the sum of the offline and online timings for a single AES computation) is at least 1.6 seconds (for all numbers tested in [29]). In [8], optimizations and improvements were made to [29] that enables running many AES executions in parallel. The best results obtained there provide an online time of 9962 ms for 680 AES operations in parallel. This yields a low average cost (about 14 ms per AES), but a high latency. The online time for a single execution is expected to be similar to [29]. Regarding [7], the cost of the offline stage for computing AES is about 156 seconds and the cost of the online stage (with 50 rounds of communication) is about 20 ms [35]. However, both [29] and [7] have many rounds of communication; thus in slower networks (e.g., between different Amazon regions) they will perform poorly. (All measurements reported in these works are for networks with very low latency.)

We note that in [29] and [7], the offline stage is independent of the circuit being evaluated in the online stage, whereas in our protocol, a single circuit is fixed for all computations. Thus, they are better suited for settings in which the function to be computed is not known ahead of times. In addition, [7] has two significant advantages over our protocol: (1) it can work with more than two parties, and (2) it can work with arithmetic circuits, which for some types of computations is much more efficient.

Overall, it is clear that when considering two parties, Boolean circuits and the offline/online setting, our protocol and prototype implementation outperform all existing solutions. In high latency networks, the improvement is by orders of magnitude.

7 Conclusion

The first implementation of cut-and-choose based 2PC was presented in [31] in 2009. It required 1114 seconds for a single computation of AES. Since then, many algorithmic and engineering improvements have been presented, gradually reducing the cost of AES computation to 264 seconds [33], to 6 seconds [2], and to even 1.4 seconds [20] and 0.46 seconds [11] when using massive parallelism. This work continues this line of work and shows how the costs can be further reduced.
using recent and new algorithmic improvements (though in a slightly different, yet very natural setting). When preprocessing 1024 executions, the average online time is less than 10 ms and the amortized offline time is only 74 ms. As we use most state-of-the-art techniques (e.g., the protocol of [20], the garbling scheme of [5], and the OT extension of [3]), these timings are the result of incredible work carried out by the community on all aspects of the protocol, together with our new consistency check. We find these results to be exciting as they are more than four orders of magnitude better than the one of [31], carried out just 6 years ago.

Acknowledgements. We would like to thank Moriya Farbstein, Meital Levy and Asaf Cohen for the implementation of the protocol and its extensive performance evaluation.

References

A Efficient Perfectly-Hiding Extractable Commitment

Perfect hiding together with extractability sounds like a contradiction in terms. This problem is solved by ensuring perfect hiding when the preprocessor phase is run between an honest \(P_2 \) and a potentially malicious \(P_1 \), but is perfectly binding and even extractable in a simulation with \(P_2 \).

In the standard model, we can use dual-mode commitments. We use the exact construction of [21] that is based on [9, 15, 18, 30], and is secure under the DDH assumption. Let \((G, q, g, h)\) be the description of a group of order \(q \) with two distinct generators \(g_1, g_2 \).

- **Preprocessing:**
 1. The receiver \(R \) chooses a random \(\rho_1 \in_R \mathbb{Z}_q \) and sets \(\rho_2 = \rho_1 + 1 \). It then computes \(h_1 = g_1^{\rho_1} \) and \(h_2 = g_2^{\rho_2} \).
 2. The receiver \(R \) and committer \(C \) engage in a zero-knowledge proof of knowledge of \(\rho_1 \), where \(R \) plays the prover and \(C \) plays the verifier. The statement proven is that \((g_1, g_2, h_1, \frac{h_2}{g_2})\) is a Diffie-Hellman tuple.

- **Commitment:** To commit to \(x \in \mathbb{G} \), choose random \(R, S \in \mathbb{Z}_q \) and compute \(u = g_1^R \cdot g_2^S \) and \(v = h_1^R \cdot h_2^S \cdot x \). The commitment value is is \(c_x = (u, v) \).

- **Decommitment:** The decommitment is canonical; the committer sends \(R, S, x \) and the receiver verifies that \((u, v)\) is correctly constructed with these values.
We begin by showing that the commitment is perfectly hiding, assuming that \(h_1, h_2 \) are correctly constructed (by the soundness of the zero-knowledge proof, this holds in a real interaction except with negligible probability). In order to see this, observe that

\[
\begin{align*}
 u &= g^{R+ws}_1 \\
 v &= g^{R\rho_1 + ws\rho_2}_1 \\
\end{align*}
\]

Letting \(g_2 = g_1^w \) for some \(w \), we have that

\[
\begin{align*}
 u &= g^{R+ws}_1 \\
 v &= g^{R\rho_1 + ws\rho_2}_1 \\
\end{align*}
\]

Considering the matrix

\[
\begin{pmatrix}
 R & ws \\
 \rho_1 & ws\rho_2
\end{pmatrix}
\]

we have that its determinant equals \(RwS\rho_2 - RwS\rho_1 = RwS(\rho_2 - \rho_1) = RwS \neq 0 \) (recall that \(\rho_2 = \rho_1 + 1 \)). Thus the equations are linearly independent. This implies that \(u \) and \(v \) are uniformly distributed in \(\mathbb{G} \), over the choice of \(R \) and \(S \). Thus, for every \(x \in \mathbb{G} \) there exist \(R, S \in \mathbb{Z}_q \) such that \((u, v)\) is a commitment to \(m \) with randomness \(R \) and \(S \). This implies that \(x \) is perfectly hidden.

We now show the simulation, for which the commitment is extractable (and perfectly binding). The simulator \(\mathcal{S} \) for a corrupted committer \(\mathcal{C} \) works as follows:

- **Simulator preprocessing:**
 1. The simulator \(\mathcal{S} \) chooses a random \(\rho \in \mathbb{R} \mathbb{Z}_q \) and computes \(h_1 = g^{\rho}_1 \) and \(h_2 = g^{\rho}_2 \). \(\mathcal{S} \) hands \(\mathcal{A} \) the pair \((h_1, h_2)\). \(\mathcal{S} \) defines the trapdoor \(td = \rho \).
 2. \(\mathcal{S} \) runs the zero-knowledge simulator with \(\mathcal{A} \) as the verifier, for the statement \((g_1, g_2, h_1, h_2)\).

 (Note that the statement is not in the language. Nevertheless, the simulator can be run.)

- **Simulator extraction:** Upon receiving a commitment \(c_x = (u, v) \), simulator \(\mathcal{S} \) computes
 \(c = v/\rho^\rho \).

First, note that the view of the committer is indistinguishable from a real execution, by the DDH assumption and the zero-knowledge property of the proof. Second, note that extraction works since

\[
\begin{align*}
 h_1 &= (g_1)^\rho \\
 h_2 &= (g_2)^\rho;
\end{align*}
\]

therefore:

\[
\frac{v}{w^\rho} = \frac{h_1^R \cdot h_2^S \cdot x}{(g_1^R \cdot g_2^S)^\rho} = \frac{h_1^R \cdot h_2^S \cdot x}{h_1^R \cdot h_2^S} = x.
\]

B The Full Protocol Specification
Running OTs for C of the remaining garbled circuits according to their placement by π the mapping function of the second execution from above (while π’ is of the first one). Also, denote the remaining garbled circuits according to their placement by π; i.e., let gc,j,i be the ith circuit of the jth bucket (for j = 1, . . . , N and i = 1, . . . , B).

Running the cut-and-choose for C and for C’:

1. The parties run the cut-and-choose sub protocol from Figure B.2 with the circuit C and parameters p, N and B.

2. The parties run the cut-and-choose sub protocol from Figure B.2 with the circuit C’ and parameters p’, N and B’. (Note that the same N is used in both cut-and-choose, so both result in the same number of buckets.)

We chose to simplify the description by using the cut-and-choose as a sub-protocol. However, the calls to \(\mathcal{F}_{\text{ExCom}}\Delta ZK\) for the masks of C and C’ must be made together since \(P_2\) should learn the XORs of the masks for the circuits that are placed in the same bucket. In the proof, we assume that the steps of the two cut-and-choose sub protocols are done in parallel, and thus the calls to \(\mathcal{F}_{\text{ExCom}}\Delta ZK\) can be made together.

From now on, we refer to the elements of the second cut-and-choose with prime. E.g. π’ is the mapping function of the second execution from above (while π is of the first one). Also, denote the remaining garbled circuits according to their placement by π; i.e., let gc,j,i be the ith circuit of the jth bucket (for j = 1, . . . , N and i = 1, . . . , B).

Running OTs for C and for C’:

1. \(P_2\) chooses \(y_1^{(1)}, \ldots, y_N^{(1)} \in \{0,1\}^{x^{(1)}}\), and \(d_1^{(1)}, \ldots, d_N^{(1)} \in \{0,1\}^{d^{(1)}}\).

2. \(P_1\) acts as the sender in \(\mathcal{F}_{\text{ot}}\) and \(P_2\) as the receiver. For bucket \(j = 1, \ldots, N\), the parties execute \(|y^{(1)}|\) OTs, where in the ith OT \(P_2\) inputs the ith bit of \(y_j^{(1)}\), and \(P_1\) inputs the set of labels in the entire bucket that correspond to 0 in the ith bit, and the set of labels in the entire bucket that correspond to 1, both concatenated with their decommitments related to lc’s. (Recall that the labels are XORed with λj.)

The parties do the same for circuit C’, where \(P_2\) inputs the bits of \(d_{j,i}^{(1)}\).

Storing buckets for the online stage: For bucket \(j = 1, \ldots, N\):

1. \(P_1\) stores \(\langle seed_{j,i}, m_{j,i}, lc_{j,i}, ld_{j,i}, \lambda_{j,i} \rangle\) for \(i = 1, \ldots, B\), and similarly for all bundles of C’.

2. \(P_2\) stores \(y_j^{(1)}, lc_{j,i}, gc_{j,i}\) for \(i = 1, \ldots, B\). In addition, it stores the labels it received for its input \(y_j^{(1)}\) from the OTs, the values of \(\Delta_j\), and similarly for all the bundles of C’.
Public Parameters:

- A circuit \(C(x, y^{(1)}, y^{(2)}) \) with \(y^{(2)} \) being public-input wires, or, a circuit \(C(x, D, y^{(1)}, y^{(2)}) \) with \(D, y^{(2)} \) being public-input wires.

Constructing the \(j \)th bundle:

1. Choose a random seed \(seed_j \in_R \{0, 1\}^k \). All the randomness needed in the next steps is derived from \(PRF_{seed}(\cdot) \).
2. Choose a random \(m_j \in_R \{0, 1\}^{\lvert x \rvert} \) and \(\lambda_j \in_R \{0, 1\}^k \).
3. Construct a garbled circuit \(gc_j \) in which the output-wire labels are the actual output bits concatenated with random labels. (E.g., the output label for bit zero is \(0 | l \) where \(l \in_R \{0, 1\}^{k-1} \)). We use an adaptively-secure garbling scheme as described in Section 2.2 in which all input-wire labels are XORed with \(\lambda \).
4. Commit to input-wire labels associated with \(x \), permuted according to \(m \), by
 \[
 \left\{ \left(i, \text{commit}(\lambda_j \oplus W_{j,i}^0), \text{commit}(\lambda_j \oplus W_{j,i}^1) \right) \right\}_{i \in \text{In}(C, x)}
 \]
 where \(\text{In}(C, x) \) denotes the set of input wires in the circuit \(C \) associated with input \(x \).
5. Commit to input-wire labels associated with \(y^{(1)} \) and \(y^{(2)} \) by
 \[
 \left\{ \left(i, \text{commit}(\lambda_j \oplus W_{j,i}^0), \text{commit}(\lambda_j \oplus W_{j,i}^1) \right) \right\}_{i \in \text{In}(C, y^{(1)}) \cup \text{In}(C, y^{(2)})}
 \]
6. If \(D \) is an input to the circuit, commit to all input-wire labels of \(D \) by
 \[
 \left\{ \left(i, \text{commit}(\lambda_j \oplus W_{j,i}^0), \text{commit}(\lambda_j \oplus W_{j,i}^1) \right) \right\}_{i \in \text{In}(C, D)}
 \]
7. Commit to all output-wire labels by \(\text{commit} \left\{ \left(j, i, W_{j,i}^0, W_{j,i}^1 \right) \right\}_{i \in \text{Out}(C)} \).
8. Let \(lc_j \) be the union of the above sets of label commitments, and let \(ld \) be the set of all the corresponding decommitments.
9. Output \((gc_j, lc_j; seed_j, ld_j, m_j, \lambda_j) \).

\(^* \)This part is unnecessary when the circuit in use is \(C' \), but since the additional overhead is small, we ignore this optimization here.
Public parameters:
- Let $s, N, B \in \mathbb{N}$ and $p \in (0, 1)$ parameters. Let $M = \frac{NB}{p}$. (Assume no rounding of M is needed.)
- A circuit C.

Picking the cut, the buckets, and the offline inputs:
1. The cut: P_2 sets σ to be a random string of length M that has exactly NB ones.
2. The mapping: P_2 picks a PRF seed π and uses $\text{PRF}_{\pi}(\cdot)$ to compute a mapping function $\pi : [N \cdot B] \rightarrow [N]$ that maps exactly B elements to each bucket. Define $\pi|\sigma : [M] \rightarrow [N]$ to be the function that maps the NB non-zero bits in σ according to π, and maps the zero bits all to -1. Let B_i be the set $\{j | \pi_\sigma(j) = i \}$ for $i = 1, \ldots, N$.
3. P_2 commits to σ and seed π using $\text{ExtractCom}(\cdot)$.

The cut-and-choose:
1. For $j = 1, \ldots, M$, P_1 runs the garbled-circuit bundle construction procedure in Figure B.2 with the circuit C, and receives $(gc_j, lc_j; seed_j, ld_j, m_j, \lambda_j)$.
2. P_1 sends gc_1, \ldots, gc_M and lc_1, \ldots, lc_M to P_2, and commits to their seeds and λ_j’s by $\text{ExtractCom}(seed_1), \ldots, \text{ExtractCom}(seed_M)$ and $\text{ExtractCom}(\lambda_1), \ldots, \text{ExtractCom}(\lambda_M)$.
3. P_2 inputs to $\mathcal{F}_{\text{ExCom}^{\Delta ZK}}$ the sets B_i for $i = 1, \ldots, N$, while P_1 inputs the values m_1, \ldots, m_M. P_2 learns the sets Δ_i for each bucket, whereas P_1 learns B_1, \ldots, B_N.
4. P_2 decommits to σ and seed π. P_1 verifies that they are consistent with J and the B_i’s received in the last step.
5. Let J be the set of indices that did not appear in any B_i. For $j \in J$, P_2 receives m_j from $\mathcal{F}_{\text{ExCom}^{\Delta ZK}}$. In addition, P_1 decommits to seed π and λ_j to P_2.
6. P_2 computes the set $\{gc_j, lc_j\}_{j \in J}$ using the seeds it received and verifies that everything is correct.

Private inputs: P_1’s input is x. P_2’s input is y.

Evaluating C:
1. P_2 sends $y^{(2)} = y \oplus y^{(1)}_j E$ to P_1.
2. P_1 sends $x_1 = x \oplus m_1$ to P_2.
3. For $i = 1, \ldots, B$,
 a. P_1 decommits λ_i.
 b. P_1 sends the input-wire labels for $y^{(2)}$ and for $x_i = x_1 \oplus m_1 \oplus m_i = x \oplus m_i$ in gc_i, and the decommitments of those labels for the corresponding commitments in lc_i. (Recall that P_2 knows $m_1 \oplus m_i$ from Δ_j, thus, can compute the value of x_i by itself.)

Continued in Figure B.5.
FIGURE B.5 (The Online Stage – Continued)

Evaluating C – continued:

4. P_2 checks that all of the decommitments are valid, and that it received all of the input-wire labels indeed associated with x_i. If no, it aborts.

5. P_1 chooses a random $D \in_R \{0,1\}^k$.

6. For $v \in \text{Out}(C)$,

 \begin{enumerate}
 \item P_1 chooses a random $R_v \in_R \{0,1\}^k$ (for masking the output wires)
 \item Let $W_{i,v}^b$ be the bth label of output wire v of gc_i, where $v \in \text{Out}(C)$. P_1 sends $(W_{i,v}^0 \oplus R_v, W_{i,v}^1 \oplus R_v \oplus D)$ for $i = 1,\ldots,B$.
 \end{enumerate}

7. P_1 sends $H(D)$.

8. P_2 evaluates gc_i, for $i = 1,\ldots,B$, and then uses the output wire labels to “decrypt” the associated R_v and $R_v \oplus D$ values. In case it learns both R_v and $R_v \oplus D$ for some output wire, it checks if the XOR of them is indeed D (by applying $H(\cdot)$ and comparing with the value that P_1 has sent). If so, it sets d to D. Otherwise, it sets $d \in \{0,1\}$.

9. If all evaluations (that ended) returned the same output, set z to be that output (but do not halt).

Evaluating C':

1. Let $d^{(1)}$ the input that P_2 used in the OTs for circuit C' in bucket j. P_2 sends $d^{(2)} = d \oplus d^{(1)} E'$.

2. P_1 sends D, and for $i = 1,\ldots,B'$, and:
 \begin{enumerate}
 \item P_1 decommits to λ_i'.
 \item P_1 sends the labels that correspond to D and $d^{(2)}$ in gc_i', and decommits to the corresponding commitments from lc_i'.
 \item P_1 sends the input-wire labels for $x_i' = x_1 \oplus m_1 \oplus m_i' = x \oplus m_i'$ in gc_i', and the decommitments of those labels for the corresponding commitments in lc_i'. (Again, recall that P_2 knows $m_1 \oplus m_i'$ from Δ_j.)
 \end{enumerate}

3. P_1 decommits to the output labels of gc_i, for $i = 1,\ldots,B$ (i.e. revealing all output wire labels of the garbled circuits for C).

4. P_2 verifies all decommitments, all the values $(W_{i,v}^0 \oplus R_v, W_{i,v}^1 \oplus R_v \oplus D)$, for $i = 1,\ldots,B$ and $v \in \text{Out}(C')$, and the hash $H(D)$, and aborts if there is a problem.

5. P_2 evaluates gc_i', for $i = 1,\ldots,B'$, and takes the majority output to be \hat{x}.

P_2's output:

1. If all evaluation circuits of C returned the same output z, then P_2 outputs z.

2. Else, if P_2 has learned earlier d such that $H(d) = H(D)$, then it outputs $f(\hat{x},y)$.

3. Else, let gc_i be a circuit for which all the output labels that P_2 received from its evaluation were also the labels that were decommitted earlier from lc_i. P_2 outputs the output of gc_i.

32