
Constructions of Truly Practical Secure Protocols

using Standard Smartcards∗

Carmit Hazay† Yehuda Lindell†

February 23, 2009

Abstract

In this paper we show that using standard smartcards it is possible to construct truly prac-
tical secure protocols for a variety of tasks. Our protocols achieve full simulation-based security
in the presence of malicious adversaries, and can be run on very large inputs. We present proto-
cols for secure set intersection, oblivious database search and more. We have also implemented
our set intersection protocol in order to show that it is truly practical: on sets of size 30,000
elements takes 20 seconds for one party and 30 minutes for the other. This demonstrates that
in settings where physical smartcards can be sent between parties (as in the case of private data
mining tasks between security and governmental agencies), it is possible to use secure protocols
with proven simulation-based security.

1 Introduction

In the setting of secure multiparty computation, a set of parties with private inputs wish to jointly
compute some functionality of their inputs. Loosely speaking, the security requirements of such a
computation are that (i) nothing is learned from the protocol other than the output (privacy), (ii)
the output is distributed according to the prescribed functionality (correctness), and (iii) parties
cannot make their inputs depend on other parties’ inputs. The standard definition of security is
based on comparing a real protocol execution to an ideal execution where a trusted party carries out
the computation for the parties. This notion is typically called simulation-based security. Secure
multiparty computation forms the basis for a multitude of tasks, including those as simple as coin-
tossing and agreement, and as complex as electronic voting and auctions, electronic cash schemes,
anonymous transactions, remote game playing (a.k.a. “mental poker”), and privacy-preserving
data mining.

The security requirements in the setting of multiparty computation must hold even when some
of the participating parties are adversarial. In this paper, we consider malicious adversaries that can
arbitrarily deviate from the protocol specification. It has been shown that, with the aid of suitable
cryptographic tools, any two-party or multiparty function can be securely computed [24, 14, 13, 4, 7]
in the presence of malicious adversaries. However, protocols that achieve this level of security are
rarely efficient enough to be used in practice, even for relatively small inputs.

∗An extended abstract of this work appeared in the 15th ACM Conference on Computer and Communications
Security (ACM CCS), 2008.

†Department of Computer Science, Bar-Ilan University, Israel. Email: {harelc,lindell}@cs.biu.ac.il. This
research was supported by the israel science foundation (grant No. 781/07). The first author is also supported
by an Eshkol scholarship from the Israel Ministry of Science.

1

Recently, there has been much interest in the data mining and other communities for secure
protocols for a wide variety of tasks. This interest exists not only in academic circles, but also
in industry, in part due to the growing conflict between the privacy concerns of citizens and the
homeland security needs of governments. Unfortunately, however, truly practical protocols that
also achieve proven simulation-based security are currently far out of reach. This is especially the
case when security in the presence of malicious adversaries is considered (see related work for other
models).

Smartcard-aided secure computation. In this paper, we construct protocols that use smart-
cards in addition to standard network communication. Specifically, in addition to sending messages
over a network, the participating parties may initialize smartcards in some way and send them to
each other. Of course, such a modus operandi is only reasonable if this is not over-used. In all of our
protocols, one party initializes a smartcard and sends it to the other, and that is all. Importantly, it
is also sufficient to send a smartcard once, which can then be used for many executions of the pro-
tocol (and even for different protocols). This model is clearly not suitable for protocols that must
be run by ad hoc participants over the Internet (e.g., for secure eBay auctions or secure Internet
purchases). However, we argue that it is suitable whenever parties with non-transient relationships
need to run secure protocols. Thus, this model is suitable for the purpose of privacy-preserving data
mining between commercial, governmental and security agencies. We construct practical two-party
protocols for the following tasks:
• Secure set intersection: This problem is of great interest in practice and has many applications.

Some examples are: finding out if someone is on two security agencies’ list of suspects, finding
out if someone illegally receives social welfare from two different agencies, finding out what
patients receive medical care at two different medical centers, and so on. This problem has
received a lot of attention due to its importance; see [21, 11, 17] for some examples. We present
a protocol that is far more efficient than any known current solutions, and provides the highest
level of security (full-simulation in the presence of malicious adversaries, and even universal
composability). Our protocol is surprisingly simple, and essentially requires one party to carry
out one 3DES or AES computation on each set element (using a regular PC), while the other
party carries out the same computations using a smartcard. Thus, for sets comprised of 30,000
elements, the first party’s computation takes approximately 20 seconds and the second party’s
computation takes approximately 30 minutes. In our protocol, only the second party receives
output.

• Oblivious database search: In this problem, a client is able to search a database held by a
server so that: (a) the client can only carry out a single search (or a predetermined number
of searches authorized by the server), and learns nothing beyond the result of the authorized
searches; and (b) the server learns nothing about the searches carried out by the client. We
remark that searches are as in the standard database setting: the database has a “key attribute”
and each record has a unique key value; searches are then carried out by inputting a key value
– if the key exists in the database then the client receives back the entire record; otherwise
it receives back a “non-existent” reply. This problem has been studied in [8, 10] and has
important applications to privacy. For example, consider the case of homeland security where
it is sometimes necessary for one organization to search the database of another. In order
to minimize information flow (or stated differently, in order to preserve the “need to know”
principle), we would like the agency carrying out the search to have access only to the single
piece of information it is searching for. Furthermore, we would like the value being searched for
to remain secret. Another, possibly more convincing, application comes from the commercial

2

world. The LexisNexis database is a paid service provided to legal professionals that enables
them – among other things – to search legal research and public records, for the purpose of
case preparation. Now, the content of searches made for case preparation is highly confidential ;
this information reveals much about the legal strategy of the lawyers preparing the case, and
would allow the other side to prepare counter-arguments well ahead of time. It is even possible
that revealing the content of some of these searches may breach attorney-client privilege. We
conclude that the searches made to LexisNexis must remain confidential, and even LexisNexis
should not learn them (either because they may be corrupted, or more likely, a breach to their
system could be used to steal this confidential information). Oblivious database search can
be used to solve this exact problem. We present a protocol for oblivious database search that
reaches a level of efficiency that is almost equivalent to a non-private database search. Once
again, we achieve provable security (under full simulation-based definitions) in the presence of
malicious adversaries.

• Oblivious document search: A similar, but seemingly more difficult, problem to that of oblivious
database search is that of oblivious document search. Here, the database is made up of a series
of unstructured documents and a keyword query should return all documents that contain that
query. This is somewhat more difficult than the previous problem because of the dependence
between documents (the client should not know if different documents contain the same keyword
if it has not searched them both). Nevertheless, using smartcards, we present a highly efficient
protocol for this problem, that is provably secure in the presence of malicious adversaries. We
remark that in many cases, including the LexisNexis example above, what is really needed is
the unstructured document search here.

We stress that our protocols are all proven secure under the standard simulation-based definition
of security (cf. [5, 13] following [15, 3, 20]), and for the case of malicious adversaries that may
follow any arbitrary polynomial-time strategy. Thus, the highest level of security in the stand alone
setting is achieved. As we have mentioned, however, we use a smartcard to aid in the computation,
unlike the standard model of computation. As will become clear, this gives extraordinary power
and makes it possible to construct protocols that are far more efficient than anything previously
known.

Composability. One criticism of attempts to construct secure protocols that are to be used
in practice is that the stand-alone model (where security is proven for only a single execution of
a protocol in isolation – or equivalently when the adversary is assumed to attack only a single
execution) is not the real-world model of computation. Thus, why does it make sense to insist on
a full proof of security when the proof is for an unrealistic model? Fortunately, all of our protocols
are secure under concurrent general composition (or equivalently, universal composability), and
thus their proven security is guaranteed in the real-world setting that they may be used.

Standard smartcards – what and why. We stress that our protocols are designed so that any
standard smartcard can be used. Before proceeding we explain why it is important for us to use
standard – rather than special-purpose – smartcards, and what functionality is provided by such
standard smartcards. The reason for our insistence on standard smartcards is twofold:

1. Ease of deployment: It is much easier to actually deploy a protocol that uses standard
smartcard technology. This is due to the fact that many organizations have already deployed
smartcards, typically for authenticating users. However, even if this is not the case, it is

3

possible to purchase any smartcard from essentially any smartcard vendor.1

2. Trust: If a special-purpose smartcard needs to be used for a secure protocol, then we need to
trust the vendor who built the smartcard. This trust extends to believing that they did not
incorrectly implement the smartcard functionality on purpose or unintentionally. In contrast,
if standard smartcards can be used then it is possible to use smartcards constructed by a
third-party vendor (and possibly constructed before our protocols were even designed). In
addition to reducing the chance of malicious implementation, the chance of an unintentional
error is much smaller, because these cards have been tried and tested over many years.

We remark that Javacards can also be considered for the application that we are considering. Javac-
ards are smartcards with the property that special-purpose Java applets can be loaded onto them in
order to provide special-purpose functionality. We remark that such solutions are also reasonable.
However, it does make deployment slightly more difficult as already-deployed smartcards (that are
used for smartcard logon and VPN authentication for example) cannot be used. Furthermore, it is
necessary to completely trust whoever wrote the applet; this can be remedied by having an open-
source applet which can be checked before loaded. Therefore, protocols that do need smartcards
with some special-purpose functionality can be used, but are slightly less desirable.

A trusted party? At first sight, it may seem that we have essentially introduced a trusted party
into the model, and so of course everything becomes easy. We argue that this is not the case. First,
a smartcard is a very specific type of trusted party, with very specific functionality (especially if
we focus on standard smartcards). Second, due to it being weak hardware, a smartcard cannot
carry out a computation on large inputs. Thus, even a special-purpose smartcard cannot directly
compute set intersection on inputs of size 30,000. Finally, smartcards are used in practice and are
becoming more and more ubiquitous. Thus, our model truly is a realistic one, and our protocols
can easily be deployed in practice.

Trusting smartcards. In our protocols, we assume that the smartcard is uncorrupted. We
base this assumption on the fact that modern smartcards are widely deployed today – mostly for
authentication – and are rarely broken (we stress that we refer to smartcards that have passed
certification like FIPS or Common Criteria, and not microprocessors with basic protection). We
discuss the security of smartcards in more detail at the end of Section 2.

Smartcard authenticity. As we have mentioned, our protocols require one party to initialize
a smartcard and send it to the other. Furthermore, the recipient of the smartcard needs to trust
that the device that it receives is really a smartcard of the specified type. Since our protocols rely
on standard smartcard technology only, this problem essentially reduces to identifying that a given
device was manufactured by a specified smartcard vendor. In principle, this problem is easily solved
by having smartcard manufacturers initialize all devices with a public/private key pair, where the
private key is known only to the manufacturer. Then, given a device and the manufacturer’s public
key it is possible to verify that the device is authentic using a simple challenge/response mechanism.
This solution is not perfect because given the compromise of a single smartcard, it is possible to
manufacture multiple forged devices. This is highly undesirable because it means that the incentive
to carry out such an attack can be very high. This can be improved by using different public keys for

1Of course, the notion of a “standard” smartcard is somewhat problematic because different vendors construct smartcards
with different properties. We therefore rely on properties that we know are in the widely-used smartcards sold by Siemens.

4

different batches (or even a different key for every device, although this is probably too cumbersome
in practice). To the best of our knowledge, such a mechanism is typically not implemented today
(rather, symmetric keys are used instead). Nevertheless, it could be implemented without much
difficulty and so is not a serious barrier.

Related work. Secure computation has been studied at great length for over two decades. How-
ever, the study of highly-efficient protocols for problems of interest has recently been intensively
studied under the premise of “privacy-preserving data mining”, starting with [19]. Most of the se-
cure protocols for this setting have considered the setting of semi-honest adversarial behavior, which
is often not sufficient. Indeed, highly-efficient protocols that are proven secure in the presence of
malicious adversaries and using the simulation-based approach are few and far between; one notable
exception being the work of [1] for securely computing the median. Therefore, researchers have
considered other directions. One possibility is to consider privacy only; see for example [9, 21, 6].
A different direction considered recently has been to look at an alternative adversary model that
guarantees that if an adversary cheats then it will be caught with some probability [2, 16]. We
stress that our protocols are more efficient than all of the above and also reach a higher level of
security than most. (Of course, we have the additional requirement of a smartcard and thus a
comparison of our protocols is not really in place; rather we view this as a comparison of models.)

2 Standard Smartcard Functionality and Security

In this section we describe what functionality is provided by standard smartcards, and the security
guarantees provided by them. Our description of standard smartcard functionality does not include
an exhaustive list of all available functions. Rather we describe the most basic functionality and
some additional specific properties that we use:

1. On-board cryptographic operations: Smartcards can store cryptographic keys for private and
public-key operations. Private keys that are stored (for decryption or signing/MACing) can
only be used according to their specified operation and cannot be exported. We note that
symmetric keys are always generated outside of the smartcard and then imported, whereas
asymmetric keys can either be imported or generated on-board (in which case, no one can
ever know the private key). Two important operations that smartcards can carry out are
basic block cipher operations and CBC-MAC computation. These operations may be viewed
as pseudorandom function computations, and we will use them as such. The symmetric
algorithms typically supported by smartcards use 3DES and/or AES, and the asymmetric
algorithms use RSA (with some also supporting Elliptic curve operations).

2. Authenticated operations: It is possible to “protect” a cryptographic operation by a logical
test. In order to pass such a test, the user must either present a password or pass a chal-
lenge/response test (in the latter case, the smartcard outputs a random challenge and the
user must reply with a response based on some cryptographic operation using a password or
key applied to the random challenge).

3. Access conditions: It is possible to define what operations on a key are allowed and what
are not allowed. There is great granularity here. For all operations (e.g., use key, delete key,
change key and so on), it is possible to define that no one is ever allowed, anyone is allowed,
or only a party passing some test is allowed. We stress that for different operations (like use
and delete) a different test (e.g., a different password) can also be defined.

5

4. Special access conditions: There are a number of special operations; we mention two here.
The first is a usage counter ; such a counter is defined when a key is either generated or
imported and it says how many times the key can be used before it “expires”. Once the key
has expired it can only be deleted. The second is an access-granted counter and is the same
as a usage counter except that it defines how many times a key can be used after passing a
test, before the test must be passed again. For example, setting the access-granted counter
to 1 means that the test (e.g., passing a challenge/response) must be passed every time the
key is used.

5. Secure messaging: Operations can be protected by “secure messaging” which means that all
data is encrypted and/or authenticated by a private (symmetric) key that was previously
imported to the smartcard. An important property of secure messaging is that it is possible
to receive a “receipt” testifying to the fact that the operation was carried out; when secure
messaging with message authentication is used, this receipt cannot be tampered with by a
man-in-the-middle adversary. Thus, it is possible for one party to initialize a smartcard and
send it to another party, with the property that the first party can still carry out secure
operations with the smartcard without the second party being able to learn anything or
tamper with the communication in an undetected way. One example where this may be
useful is that the first party can import a secret key to the smartcard without the second
party who physically holds the card learning the key. We remark that it is typically possible
to define a different key for secure messaging that is applied to messages being sent to the
smartcard and to messages that are received from the smartcard (and thus it is possible to have
unidirectional secure messaging only). In addition to privacy, secure messaging can be used
to ensure integrity. Thus, a message authentication code (MAC) can be used on commands to
the smartcard and responses from the smartcard. This can be used, for example, to enables
a remote user to verify that a command was issued to the smartcard by the party physically
holding the smartcard. (In order to implement this, a MAC is applied to the smartcard-
response to the command and this MAC is forwarded to the remote user. Since it is not
possible to forge a MAC without knowing the secret key, the party physically holding the
smartcard cannot forge a response and so must issue the command, as required.)

6. Store files: A smartcard can also be used to store files. Such files can either be public (meaning
anyone can read them) or private (meaning that some test must be passed in order to read
the file). We stress that private keys are not files because such a key can never be read out
of a smartcard. In contrast a public key is essentially a file.

We stress that all reasonable smartcards have all of the above properties, with the possible exception
of the special access conditions mentioned above in item 4. We do not have personal knowledge of
any smartcard that does not, but are not familiar with all smartcard vendors. We do know that
the smartcards of Siemens (and others) have these two counters.

Smartcard Security. We conclude this section by remarking that smartcards provide a high level
of physical security. They are not just a regular microcontroller with defined functionality. Rather,
great progress has been made over the years to make it very hard to access the internal memory of a
smartcard. Typical countermeasures against physical attacks on a smartcard include: shrinking the
size of transistors and wires to 200nm (making them too small for analysis by optical microscopes
and too small for probes to be placed on the wires), multiple layering (enabling sensitive areas
to be buried beneath other layers of the controller), protective layering (a grid is placed around
the smartcard and if this is cut, then the chip automatically erases all of its memory), sensors

6

(if the light, temperature etc. are not as expected then again all internal memory is immediately
destroyed), bus scrambling (obfuscating the communication over the data bus between different
components to make it hard to interpret without full reverse engineering), and glue logic (mixing
up components of the controller in random ways to make it hard to know what components hold
what functionality). For more information, we refer the reader to [23]. Having said the above,
there is no perfect security mechanism and this includes smartcards. Nevertheless, we strongly
believe that it is a reasonable assumption to trust the security of high-end smartcards (for example,
smartcards that have FIPS 140-2, level 3 or 4 certification). Our belief is also supported by the
computer-security industry: smartcards are widely used today as an authentication mechanism to
protect security-critical applications.

3 Definitions and Tools

We use the standard definition of two-party computation for the case of no honest majority, where
no fairness is guaranteed. In particular, this means that the adversary always receives output first,
and can then decide if the honest party also receives output; this is called “security with abort”
because a corrupted party can abort after receiving output and prevent the honest party from also
receiving output. We refer the reader to [13, Section 7] for full definitions of security for secure
two-party computation, and present a very brief description here only.

Preliminaries. A function µ(·) is negligible in n, or just negligible, if for every positive polynomial
p(·) and all sufficiently large n’s, µ(n) < 1/p(n). A probability ensemble X = {X(a, n)}a∈{0,1}∗;n∈N

is an infinite sequence of random variables indexed by a and n ∈ N. (The value a will represent
the parties’ inputs and n the security parameter.) Two distribution ensembles X = {X(a, n)}n∈N

and Y = {Y (a, n)}n∈N are said to be computationally indistinguishable, denoted X
c≡ Y , if for every

non-uniform polynomial-time algorithm D there exists a negligible function µ(·) such that for every
a ∈ {0, 1}∗,

|Pr[D(X(a, n)) = 1]− Pr[D(Y (a, n)) = 1]| ≤ µ(n)

All parties run in time that is polynomial in the security parameter. (Formally, each party has a
security parameter tape upon which the value 1n is written. Then the party is polynomial in the
input on this tape.)

Communication model. In this paper we consider a setting where parties can interact with each
other and with a physical smartcard. We model these interactions in the usual way. Specifically,
each party has two outgoing communication tapes and two incoming communication tapes; one
for interacting with the other party and one for interacting with a smartcard. Of course, only the
party physically holding the smartcard can interact with it via its communication tapes (if the
other party wishes to send a message to the smartcard it can only do so by sending it via the
party holding the smartcard). This model accurately reflects the real-world scenario of interactive
computation with smartcards.

Secure two-party computation. A two-party protocol problem is cast by specifying a random
process that maps sets of inputs to sets of outputs (one for each party). This process is called a
functionality and is denoted f : {0, 1}∗ × {0, 1}∗ → {0, 1}∗ × {0, 1}∗, where party P1 is supposed
to receive the first output and party P2 the second output. We consider the case of malicious

7

adversaries (who may arbitrarily deviate from the protocol specification) and static corruptions
(meaning that the party controlled by the adversary is fixed before the execution begins).

Security is formalized by comparing a real protocol execution to an ideal model setting where
a trusted party is used to carry out the computation. In this ideal model, the parties send their
inputs to the trusted party who first sends the output to the adversary. (The adversary controls one
of the parties and can instruct it to behave arbitrarily). After the adversary receives the output it
either sends continue to the trusted party instructing it to also send the output to the honest party,
or halt in which case the trusted party sends ⊥ to the honest party. The honest party outputs
whatever it received from the trusted party and the adversary outputs whatever it wishes. We
stress that the communication between the parties and the trusted party is ideally secure. The
pair of outputs of the honest party and an adversary A in an ideal execution where the trusted
party computes f is denoted idealf,A(z)(x1, x2, n), where x1, x2 are the respective inputs of P1 and
P2, z is an auxiliary input received by A (representing any prior knowledge A may have about the
honest party’s input), and n is the security parameter.

In contrast, in the real model, a real protocol π is run between the parties without any trusted
help. Once again, an adversaryA controls one of the parties and can instruct it to behave arbitrarily.
At the end of the execution, the honest party outputs the output specified by the protocol π and
the adversary outputs whatever it wishes. The pair of outputs of the honest party and an adversary
A in an real execution of a protocol π is denoted realπ,A(z)(x1, x2, n), where x1, x2, z and n are as
above.

Given the above, we can now define the security of a protocol π.

Definition 1 Let f and π be as above. Protocol π is said to securely compute f with abort in the
presence of malicious adversaries if for every non-uniform probabilistic polynomial-time adversary
A for the real model, there exists a non-uniform probabilistic polynomial-time adversary S for the
ideal model, such that for every I ⊆ [2],

{
idealf,S(z),I(x, y, n)

}
x,y,z∈{0,1}∗,n∈N

c≡ {
realπ,A(z),I(x, y, n)

}
x,y,z∈{0,1}∗,n∈N

where |x| = |y|.

Reactive functionalities. In some cases, the computation carried out by the trusted party is
not a simple function mapping a pair of inputs to a pair of outputs. Rather, it can be a more
complex computation that consists of a number of phases where inputs are received and outputs
are sent (e.g., think of secure poker; parties receive cards, chooses which cards to throw, and then
receive more cards). Such a computation is called a reactive functionality.

Message authentication codes. Informally speaking, a message authentication code (MAC)
is the symmetric analogue of digital signatures. Specifically, given the shared secret key it is
possible to generate a MAC tag whose legitimacy can be verified by anyone else knowing the secret
key. A MAC is said to be secure if without knowledge of the key, no polynomial-time adversary
can generate a tag that will be accepted, except with negligible probability; see [13] for a formal
definition.

Pseudorandom permutations and smartcards. Informally speaking, a pseudorandom per-
mutation is an efficiently computable bijective function that looks like a truly random bijective
function to any polynomial-time observer; see [12] for a formal definition. We remark that pseudo-
random permutations have short secret keys and they look like random functions to any observer

8

that does not know the key. Modern block ciphers like 3DES and AES are assumed to be pseudo-
random permutations (and indeed one of the criteria in the choice of AES was that it should be
indistinguishable from a random permutation).

One of the basic cryptographic operations of any smartcard is the computation of a block cipher
using a secret key that was imported into the smartcard (and is never exported from it later). We
use pseudorandom permutations in our protocols and will assume that the block cipher in the
smartcard behaves like a pseudorandom permutation. This is widely accepted for modern block
ciphers, and in particular for 3DES and AES. We remark that this assumes that the size of inputs
to the pseudorandom permutation are of the appropriate size (e.g., 128 bits for AES).

4 Secure Set Intersection

In this section we show how to securely compute the secure set intersection problem defined by
F∩(X, Y) = X ∩Y , where X = {x1, . . . , xn1} and Y = {y1, . . . , yn2}, and one party receives output
(while the other learns nothing). We note that the problem of securely computing the function feq,
defined as feq(x, y) = 1 if and only if x = y, is a special case of set intersection. Thus, our protocol
can also be used to compute feq with extremely high efficiency.

The basic idea behind our protocol is as follows. The first party P1, with input set X =
{x1, . . . , xn1} initializes a smartcard with a secret key k for a pseudorandom permutation F (i.e., F
is a block cipher). Then, it computes XF = {Fk(x1), . . . , Fk(xn1)} and sends XF and the smartcard
to the second party. The second party P2, with input Y = {y1, . . . , yn2} then uses the smartcard
to compute Fk(yi) for every i, and it outputs every yi for which Fk(yi) ∈ XF . It is clear that
P1 learns nothing because it does not receive anything in the protocol. Regarding P2, if it uses
the smartcard to compute Fk(y) for some y ∈ X ∩ Y , then it learns that y ∈ X, but this is the
information that is supposed to be revealed! In contrast, for every x ∈ X that for which P2 does
not use the smartcard to compute Fk(x), it learns nothing about x from XF (because Fk(x) just
looks like a random value).

Despite the above intuitive security argument, there are a number of subtleties that arise. First,
nothing can stop P2 from asking the smartcard to compute Fk(y) for a huge number of y’s (taking
this to an extreme, if X and Y are social security numbers, then P2 can use the smartcard to
compute the permutation on all possible social security numbers). We prevent this by having P1

initialize the key k on the smartcard with a usage counter set to n2. Recall that this means that
the key k can be used at most n2 times, after which the key can only be deleted. In addition to the
above, in order to achieve simulation-based security we need to have party P2 compute Fk(y) for all
y ∈ Y before P1 sends it XF (this is a technicality that comes out of the proof). In order to achieve
this, we have P1 initialize k with secure messaging for authentication using an additional key kinit.
This initialization is an association between the key k and the key kinit so that when a command
to delete k is issued to the smartcard, the confirmation by the smartcard that this operation took
place is authenticated using a message authentication code keyed with kinit (standard smartcards
support such a configuration). Observe that given this initialization, P2 can prove to P1 that it has
deleted k before P1 sends XF (note that P1 knows kinit and so can verify that the MAC is correct).

4.1 The Basic Protocol

Let F be a pseudorandom permutation with domain {0, 1}n and keys that are chosen uniformly
from {0, 1}n (this is for simplicity only).

Protocol 2 (secure set intersection – P2 only receives output)

9

• Inputs: Party P1 has a set of n1 elements and party P2 has a set of n2 elements; all elements
are taken from {0, 1}n, where n also serves as the security parameter.

• Auxiliary inputs: Both P1 and P2 are given n1 and n2, as well as the security parameter n.

• SmartCard Initialization: Party P1 chooses two keys k, kinit ← {0, 1}n and imports k into a
smartcard SC for usage as a pseudorandom permutation. P2 sets the usage counter of k to be
n2 and defines that the confirmation to DeleteObject is MACed using the key kinit.
P1 sends SC to P2 (this takes place before the protocol below begins).2

• The protocol:

1. P2’s first step:

(a) Given the smartcard SC, party P2 computes the set YF = {(y, Fk(y))}y∈Y .
(b) Next, P2 issues a DeleteObject command to the smartcard to delete k and receives

back the confirmation from the smartcard.
(c) P2 sends the delete confirmation to P1.

2. P1’s step: P1 checks that the DeleteObject confirmation states that the operation was
successful and verifies the MAC-tag on the response. If either of these checks fail, then P1

outputs ⊥ and halts. Otherwise, it computes the set XF = {Fk(x)}x∈X , sends it to P2 and
halts.

3. P2’s second step: P2 outputs the set {y | Fk(y) ∈ XF } and halts.

We have the following theorem:

Theorem 3 Assume that F is a pseudorandom permutation over {0, 1}n. Then, Protocol 2 securely
computes the function F∩(X, Y) = X ∩ Y in the presence of malicious adversaries, where only P2

receives output.

Proof: We treat each corruption case separately:

No parties are corrupted. In this case, all the adversary sees is the list XF which reveals
nothing about X by the fact that F is a pseudorandom permutation (recall that we assume that
the adversary cannot intercept and use the smartcard while en route between the parties).

Party P1 is corrupted. Let A be an adversary controlling P1. We construct an ideal-model
simulator S that works with a trusted party computing F∩. S invokes A upon its input and
receives from A the keys k and kinit that S imports to the smartcard (S receives all messages sent
by A, including those sent to the smartcard, because sending a message to the smartcard involves
A writing on its outgoing communication tape to the smartcard which can be read by S). Then, S
hands A a confirmation message for delete with a correct MAC (computed using kinit). Following
this, S receives XF = {z1, . . . , zn1} from A and for every i sets xi = F−1

k (zi). (If some zi is not
in the range of Fk, then S ignores it.) Finally, S sends X = {x1, . . . , xn1} to the trusted party
computing F∩, outputs whatever A outputs and halts. The view of A and thus its output in
this simulation is identical to a real execution because it consists only of the delete confirmation

2We assume that SC is sent via a secure carrier and so cannot be accessed by an adversary in the case that P1 and P2 are
both honest. This assumption can be removed by protecting the use of k with a random password of length n. Then, P1 sends
the password to P2 after it receives SC.

10

message. Regarding the output of the honest P2, notice that in a real execution P2 outputs an
element y if and only if Fk(y) ∈ XF which is equivalent to saying that there exists a z ∈ XF such
that F−1

k (z) ∈ Y . However, this is exactly what determines P2’s output in the ideal model, as
required.

Party P2 is corrupted. Let A be an adversary controlling P2. We construct an ideal-model
simulator S that works with a trusted party computing F∩. S chooses random k, kinit, initializes
Y = φ, and invokes A upon its input. Whenever A sends a value y intended for the smartcard, S
adds y to the set Y , and gives A the smartcard response Fk(y) computed using the key k that S
chose. If A attempts to send more than n2 values to the smartcard, S replies with a fail message
(simulating what the smartcard would do if the usage counter reaches zero). Finally, S receives
a delete confirmation message from A. If the message is not valid (when checking the MAC with
key kinit, then S sends ⊥ to the trusted party for input, outputs whatever A outputs and halts.
Else, S sends the set Y that it constructed above to the trusted party and receives back the set
Z = X ∩ Y . Simulator S then constructs the set XF by first adding Fk(z) for every z ∈ Z. Then,
S adds Fk(z) for n1−|Z| distinct elements that are also different from every element in Y . Finally,
S hands A the set XF (as if it was received from P1, outputs whatever A outputs and then halts.

We argue that the output distribution of S and the honest P2 in the ideal model is computa-
tionally indistinguishable from the output distribution of A and the honest P2 in a real protocol
execution. In order to prove this, we construct S ′ who works exactly like S except that it uses
a truly random permutation instead of Fk. Using a straightforward reduction to the security of
the pseudorandom permutation, we have that the output of S ′ and P2 is computationally indistin-
guishable from the output of S and P2. Next, we construct S ′′ who instead of interacting with a
trusted third party is given P1 real input set X. Then, S ′′ constructs the set XF like S ′ except
that the n1− |Z| elements that are added are those in the set X −X ∩ Y (but again, using a truly
random permutation). Since both S ′ and S ′′ construct XF by applying a random permutation to
n1 distinct elements, we have that the distributions are identical. Finally, we construct S ′′′ who
works exactly like S ′′ exact that it uses Fk again, instead of using a random permutation. Once
again, the output distribution of S ′′ and P2 is indistinguishable from the output distribution of
S ′′′ and P2, due to the assumption that Fk is a pseudorandom permutation. The proof of this
corruption case is concluded by noting that the messages sent by S ′′′ are exactly the same as those
sent by an honest P1. (Note that S ′′′ constructs XF by taking the set Z = X ∩ Y and then adding
X −X ∩ Y , but this means that it is constructed from the set X, just like an honest P1.)

Composability. Observe that our simulators above do not rewind A at all. Thus, as shown
in [18], this proves that the protocol is also secure under concurrent general composition (equiva-
lently, it is universally composable). We remark that in [18] this is shown only for protocols that
have the additional property of “start synchronization”. However, this always holds for two-party
protocols.

Reusing the smartcard. Although we argue that it is realistic for parties in non-transient
relationships to send smartcards to each other, it is not very practical for them to do this every
time they wish to run the protocol. Rather, they should be able to do this only once, and then run
the protocol many times. This is achieved in a very straightforward way using secure messaging.
Specifically, P1 initializes the smartcard so that a key for a pseudorandom permutation can be
imported, while encrypted under a secure messaging key ksm. This means that P1 can begin the

11

protocol by importing a new key k to the smartcard (with usage counter n2 for the size of the
set in this execution and protected with kinit for delete as above). This means that P1 only needs
to send a smartcard once to P2 and the protocol can be run many times, using standard network
communication only.

4.2 Experimental Results

We implemented our protocol for set intersection using the eToken smartcard of Aladdin Knowledge
Systems and received the following results:

Size of Run-time Run-time Avg time per
each set of P1 of P2 element for P2

1000 2 sec 52 sec 52 ms.
5000 5 sec 262 sec 52 ms.
10000 8 sec 493 sec 49 ms.
20000 14 sec 1196 sec 60 ms.
30000 21 sec 1982 sec 66 ms.

These results confirm the expected complexity of approximately 50 milliseconds per smartcard
operation. We remark that no code optimizations were made and the running-time can be further
improved (although the majority of the work is with the smartcard and this cannot be made faster
without further improvements in smartcard technology).

5 Oblivious Database Search

In this section we study the problem of oblivious database search. The aim here is to allow a
client to search a database without the server learning the query (or queries) made by the client.
Furthermore, the client should only be able to make a single query (or, to be more exact, the client
should only be able to make a search query after receiving explicit permission from the server).
This latter requirement means that the client cannot just download the entire database and run
local searches. We present a solution whereby the client downloads the database in encrypted form,
and then a smartcard is used to carry out a search on the database by enabling the client to decrypt
a single database record.

We now provide an inaccurate description of our solution. Denote the ith database record by
(pi, xi), where pi is the value of the search attribute (as is standard, the values p1, . . . , pN are
unique). We assume that each pi ∈ {0, 1}n, and for some ` each xi ∈ {0, 1}`n (recall that the
pseudorandom permutation works over the domain {0, 1}n; thus pi is made up of a single “block”
and xi is made up of ` blocks). Then, the server chooses a key k and computes ti = Fk(pi),
ui = Fk(ti) and ci = Eui(xi), for every i = 1, . . . , N . The server sends the encrypted database
(ti, ci) to the client, together with a smartcard SC that has the key k. The key k is also protected
by a challenge/response with a key ktest that only the server knows; in addition, after passing a
challenge/response, the key k can be used only twice (this is achieved by setting the access-granted
counter of k to 2; see Section 2). Now, since F is a pseudorandom function, the value ti reveals
nothing about pi, and the “key” ui is pseudorandom, implying that ci is a cryptographically sound
(i.e., secure) encryption of xi, that therefore reveals nothing about xi. In order to search the
database for attribute p, the client obtains a challenge from the smartcard for ktest and sends it to
the server. If the server agrees that the client can carry out a search, it computes the response and
sends it back. The client then computes t = Fk(p) and u = Fk(t) using the smartcard. If there

12

exists an i for which t = ti, then the client decrypts ci using the key u, obtaining the record xi as
required. Note that the server has no way of knowing the search query of the client. Furthermore,
the client cannot carry out the search without explicit approval from the server, and thus the
number of searches can be audited and limited (if required for privacy purposes), or a charge can
be issued (if a pay-per-search system is in place).

We warn that the above description is not a fully secure solution. To start with, it is possible for
a client to use the key k to compute t and t′ for two different values p and p′. Although this means
that the client will not be able to obtain the corresponding records x and/or x′, it does mean that
it can see whether the two values p and p′ are in the database (something which it is not supposed
to be able to do, because just the existence of an identifier in a database can reveal confidential
information). We therefore use two different keys k1 and k2; k1 is used to compute t and k2 is used
to compute u. In addition, we do not use u to directly encrypt x and use the smartcard with a
third key k3 (this is needed to enable a formal reduction to the security of the encryption scheme
and for obtaining simulatability).

5.1 The Functionality

We begin by describing the ideal functionality for the problem of oblivious database search; the
functionality is a reactive one where the server P1 first sends the database to the trusted party, and
the client can then carry out searches. We stress that the client can choose its queries adaptively,
meaning that it can choose what keywords to search for after it has already received the output
from previous queries. However, each query must be explicitly allowed by the server (this allows
the server to limit queries or to charge per query). We first present a basic functionality and then
a more sophisticated one:

The Oblivious Database Search Functionality FbasicDB

Functionality FbasicDB works with a server P1 and a client P2 as follows (the variable init is initially
set to 0):

Initialize: Upon receiving from P1 a message (init, (p1, x1), . . . , (pN , xN)), if init = 0, functionality
FbasicDB sets init = 1, stores all pairs and sends (init, N) to P2. If init = 1, then FbasicDB ignores
the message.

Search: Upon receiving a message retrieve from P2, functionality FbasicDB checks that init = 1 and if
not it returns notInit. Otherwise, it sends retrieve to P1. If P1 replies with allow then FbasicDB

forwards allow to P2. When P1 replies with (retrieve, p), FbasicDB works as follows:

1. If there exists an i for which p = pi, functionality FbasicDB sends (retrieve, xi) to P2

2. If there is no such i, then FbasicDB sends notFound to P2.

If P1 replies with disallow, then FbasicDB forwards disallow to P2.

Figure 1: The basic oblivious database search functionality

The main drawback with FbasicDB is that the database is completely static and updates cannot
be made by the server. We therefore modify FbasicDB so that inserts and updates are included.
An insert operation adds a new record to the database, while an update operation makes a change
to the x portion of an existing record. We stress that in an update, the previous x value is not
erased, but rather the new value is concatenated to the old one. We define the functionality in this

13

way because it affords greater efficiency. Recall that in our protocol, the client holds the entire
database in encrypted form. Furthermore, the old and new x portions are encrypted with the same
key. Thus, if the client does not erase the old encrypted x value, it can decrypt it at the same
time that it is able to decrypt the new x value. Another subtlety that arises is that since inserts
are carried out over time, and the client receives encrypted records when they are inserted, it is
possible for the client to know when a decrypted record was inserted. In order to model this, we
include unique identifiers to records; when a record is inserted, the ideal functionality hands the
client the identifier of the inserted record. Then, when a search succeeds, the client receives the
identifier together with the x portion. This allows the client in the ideal model to track when a
record was inserted (of course, without revealing anything about its content). Finally, we remark
that our solution does not efficiently support delete commands (this is for the same reason that
updates are modeled as concatenations). We therefore include a reset command that deletes all
records. This requires the server to re-encrypt the entire database from scratch and send it to the
client. Thus, such a command cannot be issued at too frequent intervals. See Figure 2 for the full
definition of FDB.

The Oblivious Database Functionality FDB

Functionality FDB works with a server P1 and client P2 as follows (the variable init is initially set to 0):

Insert: Upon receiving a message (insert, p, x) from P1, functionality FDB checks that there is no
recorded tuple (idi, pi, xi) for which p = pi. If there is such a tuple it ignores the message.
Otherwise, it assigns an identifier id to (p, x), sends (insert, id) to P2, and records the tuple
(id, p, x).

Update: Upon receiving a message (update, p, x) from P1, functionality FDB checks that there is a
recorded tuple (idi, pi, xi) for which p = pi. If there is no such tuple it ignores the message.
Otherwise it updates the tuple, by concatenating x to xi.

Retrieve: Upon receiving a query (retrieve, p) from the client P2, functionality FDB sends retrieve to
P1. If P2 replies with allow then:

1. If there exists a recorded tuple (idi, pi, xi) for which p = pi, then FDB sends (idi, xi) to P2.

2. If there does not exist such a tuple, then FDB sends notFound to P2.

Reset: Upon receiving a message reset from P1, the functionality FDB sends reset to P2 and erases all
entries.

Figure 2: A more comprehensive database functionality

5.2 A Protocol for Securely Computing FbasicDB

We first present a protocol for securely computing the basic functionality FbasicDB. Let F be a
(efficiently invertible) pseudorandom permutation over {0, 1}n with keys that are uniformly chosen
from {0, 1}n. We define a keyed function F̂ from {0, 1}n to {0, 1}`n by

F̂k(t) = 〈Fk(t + 1), Fk(t + 2), . . . , Fk(t + `)〉
where addition is modulo 2n. We remark that F̂k is a pseudorandom function when the input t is
uniformly distributed (this actually follows directly from the proof of security in counter mode for
block ciphers). We assume that all records in the database are exactly of length `n (and that this
is known); if this is not the case, then padding can be used.

14

In our protocol, we use a challenge/response mechanism in the smartcard to restrict use of
cryptographic keys. For the sake of concreteness, we assume that the response to a challenge chall
with key ktest is Fktest(chall) where F is a pseudorandom permutation as above. This makes no
difference, and we define it this way for the sake of concreteness only.

Protocol 4 (oblivious database search – basic functionality FbasicDB)
• Smartcard initialization: Party P1 chooses three keys k1, k2, k3 ← {0, 1}n and imports them

into a smartcard SC for use for a pseudorandom permutation. In addition, P1 imports a key
ktest as a test object that protects them all by challenge/response. Finally, P1 sets the access-
granted counter of k1 and k2 to 1, denoted respectively by AG1, AG2, (and sets no access-granted
counter of k3). See Section 2 for the definition of an access-granted counter.

P1 sends SC to P2 (this takes place before the protocol below begins). Upon receiving SC,
party P2 checks that there exist three keys with the properties defined above; if not it outputs ⊥
and halts.3

• The protocol:

• Initialize: Upon input (init, (p1, x1), . . . , (pN , xN)) for party P1, the parties work as follows:
1. P1 randomly permutes the pairs (pi, xi).
2. For every i, P1 computes ti = Fk1(pi), ui = Fk2(ti) and ci = F̂k3(ti)⊕ xi.
3. P1 sends (u1, c1), . . . , (uN , cN) to P2 (these pairs are an encrypted version of the database).
4. Upon receiving (u1, c1), . . . , (uN , cN), party P2 stores the pairs and outputs (init, N).

• Search: Upon input (retrieve, p) for party P2, the parties work as follows:
1. P2 queries SC for a challenge, receiving chall. P2 sends chall to P1.
2. Upon receiving chall, if party P1 allows the search it computes resp = Fktest(chall) and

sends resp to P2. Otherwise, it sends disallow to P2.
3. Upon receiving resp, party P2 hands it to SC in order to pass the test. Then:

(a) P2 uses SC to compute t = Fk1(p) and u = Fk2(t).
(b) If there does not exist any i for which u = ui, then P2 outputs notFound.
(c) If there exist an i for which u = ui, party P2 uses SC to compute r = F̂k3(t); this

involves ` calls to Fk3 in SC. Then, P2 sets x = r ⊕ ci and outputs (retrieve, x).

Theorem 5 Assume that F is a strong pseudorandom permutation over {0, 1}n and let F̂ be as
defined above. Then, Protocol 4 securely computes FbasicDB in the presence of malicious adversaries.

Proof: We treat each corruption case separately:

No parties are corrupted. In this case, all the adversary sees within the initialization phase is
a list of pairs (u1, c1), . . . , (uN , cN) which reveals nothing about the values (p1, x1), . . . , (pN , xN))
by the fact that F is a pseudorandom permutation. Furthermore, during every search query the
adversary sees the values chall and Fktest(chall) which does not give it any useful information about
the parties’ inputs since ktest is chosen independently of k1, k2 and k3.

3Not all smartcards allow checking the properties of keys. If not, this will be discovered the first time a search is carried
out and then P2 can just abort then.

15

Party P1 is corrupted. Let A be an adversary controlling P1; we construct a simulator S that
works as follows:

1. S obtains the keys k1, k2, k3 that A imports to the smartcard, as well as the test key ktest. If
A does not configure the smartcard correctly, then S sends ⊥ to FbasicDB.

2. Upon receiving (u1, c1), . . . , (uN , cN) from A, simulator S computes ti = F−1
k2

(ui), pi =
F−1

k1
(ti) and xi = F̂k3(ti) ⊕ ci, for every i. Then, S sends (init, (p1, x1), . . . , (pN , xN)) to

FbasicDB.

3. Upon receiving a message retrieve from FbasicDB, simulator S chooses a random challenge
chall ∈R {0, 1}n and hands it to A. Let resp be the response from A. If resp = Fktest(chall)
then S sends allow to FbasicDB; otherwise, including the case that A does not respond at all,
S sends disallow.

This completes the simulation. The output distribution from the simulation is identical to a real
execution. This is due to the fact that F is a pseudorandom permutation and thus k1, k2, k3 together
with a pair (ui, ci) define a unique (pi, xi) that is sent to FbasicDB. In addition, P2 can carry out
a search if and only if resp is correctly computed; thus, S sends allow to FbasicDB if and only if P2

can carry out a search. Finally, we note that A’s view is identical in the simulation and in a real
execution because the only values it sees in both cases are truly random challenges chall ∈R {0, 1}n.

Party P2 is corrupted. We now proceed to the case that P2 is corrupted. Again, let A be an
adversary controlling P2; we construct S as follows:

1. Upon receiving input (init, N) from FbasicDB, simulator S constructs N tuples (t1, u1, c1), . . . ,
(tN , uN , cN) where each ti, ui ∈R {0, 1}n and ci ∈R {0, 1}`n (recall that ` is known to S).
S also chooses ktest ∈R {0, 1}n. If there exist i 6= j such that ti ∈ {tj + 1, . . . , tj + `} or
tj ∈ {ti + 1, . . . , ti + `}, then S outputs fail1 and halts.

S hands A the pairs (u1, c1), . . . , (uN , cN).

2. Upon receiving chall from A, simulator S sends retrieve to FbasicDB. If it receives back allow
then it computes resp = Fktest(chall) and hands it to A; if it receives back disallow then it
hands disallow to A. S then sets the variables AG1 = AG2 = 1 (these are recordings of the
current access granted values).

3. When A queries Fk1 on SC with p, simulator S checks that AG1 = 1. If no, it simulates an
error message from SC back to A. If yes, it sets AG1 = 0 and sends (retrieve, p) to FbasicDB.

(a) If this is the first time that A has queried p, then:

i. If FbasicDB replies with notFound, then S chooses a random tp ∈R {0, 1}n, stores the
pair (p, tp), and hands tp to A.

ii. If FbasicDB replies with (retrieve, x), then S chooses a random index i ∈ {1, . . . , N}
that has not yet been chosen, hands ti to A, and stores the association (i, p, x).

(b) If this is not the first time that A queried p, then S returns the same reply as last time
(either tp or ti, appropriately).

4. When A queries Fk2 on SC with some t, simulator S checks that AG2 = 1. If no, it simulates
an error message from SC back to A. If yes, it sets AG2 = 0 and works as follows:

16

(a) If there exists an i and a tuple (ti, ui, ci) where t = ti, then S hands A the value ui from
the tuple (ti, ui, ci).

(b) If there does not exists such an i, then S chooses a random u ∈R {0, 1}n and hands u to
A. S also stores the pair (t, u) so that if t is queried again, then S will reply with the
same u.

5. When A queries Fk3 on SC with some value t, simulator S checks if there exists an i and a
tuple (ti, ui, ci) where t = ti + j for some j ∈ {1, . . . , `}.
(a) If no, then S returns a random value (S stores a set to maintain consistency, meaning

that if in the future the same t′ is queried, it returns the same random value).

(b) If yes, then S checks that there is a recorded tuple (i, pi, xi). If no, S outputs fail2.
Otherwise, it hands A the n-bit string cj

i ⊕ xj
i where cj

i is the jth n-bit block of ci, and
xj

i is the jth n-bit block of xi.

S continues as above.

This completes the simulation. We begin by showing that in the simulation, the probability that
S outputs fail1 or fail2 is negligible. Regarding fail1, this follows from the fact that ` is polynomial
in n, and the values t are chosen randomly within a range of size 2n. Regarding fail2, recall that S
outputs fail2 if A sends a value t ∈ {ti +1, . . . , ti + `} for some ti in a tuple (ti, ui, ci) but there is no
stored tuple (i, pi, xi). Now, if no tuple (i, pi, xi) is stored, then this means that S never gave A the
value ti from the ith tuple (ti, ui, ci). However, ti is uniformly distributed and so the probability
that A sends t ∈ {ti + 1, . . . , ti + `} is negligible.

Next, consider a modification to Protocol 4 where instead of Fk1 , Fk2 and Fk3 , three truly
random permutations H1, H2 and H3 are used instead; denote the modified protocol by π′. It is
straightforward to show that the output distribution from π′ is computationally indistinguishable
from the real protocol. This is due to the fact that the protocol can be implemented using an oracle
to a random or pseudorandom permutation. We now claim that conditioned on S not outputting
fail1 and this same event (of overlapping ti, tj series) does not occur in π′, the output distribution
of S and an honest P1 in the ideal model is statistically close to the output distribution of A and
an honest P1 in an execution of the modified protocol π′. This is due to the fact that S chooses
the (ti, ui, ci) values uniformly at random, exactly like an honest P1 in π′ (where truly random
permutations are used to compute these values). Now, since none of the ti and tj values in S’s
simulation or in π′ overlap, the distribution over the values in the simulation is exactly as in the
execution of π′. However, a bad event can happen if A can decrypt a block of some ci without
having queried pi. Note that this is exactly the event that causes fail2 to occur, and we have already
shown that this occurs with at most negligible probability. This completes the proof of security.

Composability. As in the protocol for set intersection, our simulators do not rewind A at all.
Therefore, our protocol is secure under concurrent general composition.

Remark – adaptive oblivious transfer. Note that the adaptive k-out-of-n oblivious trans-
fer functionality (meaning, oblivious transfer with adaptive queries), is a special case of oblivious
database search (where the keywords are just the indices from 1 to n). Thus we obtain an extraor-
dinarily efficient protocol for this problem.

17

5.3 A Protocol for Securely Computing FDB

A protocol for securely computing the more sophisticated functionality FDB can be derived directly
from Protocol 4. Specifically, instead of sending all the pairs (ui, ci) at the onset, P1 sends a new
pair every time an insert is carried out. In addition, an update just involves P1 re-encrypting the
new xi value and sending the new ciphertext c′i. Finally, a reset is carried out by choosing new keys
k1, k2, k3 and writing them to the smartcard (deleting the previous ones). Then, any future inserts
are computed using these new keys. Of course, the new keys are written to the smartcard using
secure messaging, as we have described above.

6 Oblivious Document Search

In Section 5 we showed how a database can be searched obliviously, where the search is based
only on a key attribute. Here, we show how to extend this to a less structured database, and in
particular to a corpus of texts. In this case, there are many keywords that are associated with each
document and the user wishes to gain access to all of the documents that contain a specific keyword.
A naive solution would be to define each record value so that it contains all the documents which
the keyword appears in. However, this would be horrifically expensive because the same document
would have to be repeated many times. We present a solution where each document is stored
(encrypted) only once, as follows.

Our solution uses Protocol 4 as a subprotocol, and we model this by constructing our protocol
for oblivious document search in a “hybrid” model where a trusted party is used to compute the
ideal functionality FbasicDB. (The soundness of working in this way was proven in [5].) The basic
idea is for the parties to use FbasicDB to store an index to the corpus of texts as follows. The server
chooses a random value si for every document Di and then associates with a keyword p the values
si where p appears in the document Di. Then, this index is sent to FbasicDB, enabling P2 to search
it obliviously. In addition, P1 encrypts document Di using a smartcard and si in the same way
that the xi values are encrypted using ti in Protocol 4. Since P2 is only able to decrypt a document
if it has the appropriate si value, it can only do this if it queried FbasicDB with a keyword p that is
in document Di. Observe that in this way, each document is only encrypted once.

Let P be the space of keywords of size M , let D1, . . . , DN denote N text documents, and let
Pi = {pij} be the set of keywords that appear in Di (note Pi ⊆ P). Using this notation, when a
search is carried out for a keyword p, the client is supposed to receive the set of documents Di for
which p ∈ Pi. We now proceed to formally define the oblivious document search functionality Fdoc

in Figure 3.
Our protocol uses an additional tool of perfectly-hiding commitment scheme denoted by (com, dec)

that enables a party to commit to a value while keeping it secret (even from all powerful adversary);
see [12] for a formal definition. We let com(m; r) denotes the commitment to a message m using
random coins r. For efficiency, we instantiate com(·; ·) with Pedersen’s commitment scheme [22].
Assume, for simplicity, that q− 1 = 2q′ for some prime q′, and let g, h be generators of a subgroup
of Z∗q of order q′. A commitment to m is then defined as com(m; r) = gmhr where r ←R Zq−1.
The scheme is perfectly hiding as for every m, r,m′ there exists r′ such that gmhr = gm′

hr′ . The
scheme is binding assuming hardness of computing logg h.

18

The Oblivious Document Search Functionality Fdoc

Functionality Fdoc works with a server P1 and client P2 as follows (the variable init is initially set to 0):

Initialize: Upon receiving from P1 a message (init,P, D1, . . . , DN), if init = 0, functionality Fdoc sets
init = 1, stores all documents and P, and sends (init, N, M) to P2, where N is the number of
documents and M is the size of the keyword set M . If init = 1, then Fdoc ignores the message.

Search: Upon receiving a message search from P2, functionality Fdoc checks that init = 1 and if not
it returns notInit. Otherwise, it sends search to P1. If P1 replies with allow then Fdoc forwards
allow to P2. When P2 replies with (search, p), Fdoc works as follows:

1. If there exists an i for which p ⊆ Pi, functionality Fdoc sends (search, {Di}p∈Pi
) to P2.

2. If there is no such i, then Fdoc sends notFound to P2.

If P1 replies with disallow, then Fdoc forwards disallow to P2.

Figure 3: Oblivious document search via keywords

We now present the protocol for securely computing Fdoc. Recall that our protocol uses a
trusted party to compute FbasicDB. Of course, the real protocol uses Protocol 4 as a subprotocol;
the presentation using FbasicDB is simply clearer.

Protocol 6 (oblivious document search by keyword)
• Smartcard initialization: Party P1 chooses a key k ← {0, 1}n and imports it into a smartcard

SC for use for a pseudorandom permutation. P1 sends SC to P2 (this takes place before the
protocol below begins).

• The protocol:

• Initialize: Upon input (init,P, D1, . . . , DN) to P1, the parties work as follows:
1. The server P1 initializes a smartcard with a key k for a pseudorandom permutation, and

sends the smartcard to P2.
2. P1 chooses random values s1, . . . , sN ∈R {0, 1}n (one random value for each document),

and sends P2 the commitments {comi = com(si; ri)}N
i=1 where r1, . . . , rN are random

strings of appropriate length.
3. Then, P1 defines a database of M records (pj , xj) where pj ∈ P is a keyword, and xj =
{(i, (si, ri))}pj∈Di (i.e., xj is the set of pairs (i, (si, ri)) where i is such that pj appears
in document Di). Finally, it encrypts each document Di by computing Ci = F̂k(si)⊕Di

(see Section 5.2 for the definition of F̂).
4. P1 sends C1, . . . , CN to P2, and sends (init, (p1, x1), . . . , (pM , xM)) to FbasicDB.
5. Upon receiving com1, . . . , comN and C1, . . . , CN from P1 and (init,M) from FbasicDB,

party P2 outputs (init, N, M).

• Search: Upon input (search, p) to P2, the parties work as follows:
1. The client P2 sends (retrieve, p) to FbasicDB and receives back a set x = {(i, (si, ri))}.
2. For every i in the set x, party P2 verifies first that comi = com(si, ri). If the verification

holds it uses the smartcard to compute Di = F̂k(si)⊕Ci, and records Di only if it includes
p.

3. P2 outputs (search, {Di}) where {Di} is the set of documents obtained above.

19

We have the following theorem, that can be derived from the proof of Theorem 5.

Theorem 7 Assume that F is a pseudorandom permutation over {0, 1}n and let F̂ be as defined
in Section 5.2. Then, Protocol 6 securely computes Fdoc in the presence of malicious adversaries,
when Protocol 4 is used in place of the trusted party computing FbasicDB.

Proof: We treat each corruption case separately. Our proof is in a hybrid model where a trusted
party computes an ideal functionality FbasicDB.

No parties are corrupted. In this case, all the adversary sees are the sets com1, . . . , comN

and C1, . . . , CN which reveal nothing about the values (P, D1, . . . , DN) by the facts that com is a
perfectly hiding commitment scheme and F is a pseudorandom permutation (recall that the rest
of the messages are sent via the ideal execution of FbasicDB).

Party P1 is corrupted. Let A be an adversary controlling P1; we construct a simulator S that
works as follows:

1. S obtains the keys k that A imports to the smartcard. If A does not configure the smartcard
correctly, then S sends ⊥ to Fdoc.

2. Upon receiving from A, (com1, . . . , comN), (C1, . . . , CN) and (init, (p1, x1), . . . , (pM , xM))
(where the last message is addressed to FbasicDB), simulator S sets P = {p1, . . . , pM}. Then,
S records Di = F̂k(si) ⊕ Ci only if there exists a pair (i, j) for which (i, (si, ri)) ∈ xj ,
comi = com(si; ri), and Di includes the keyword xj . In addition, if there exists i such that
(i, (si, ri)) ∈ xj , yet comi 6= com(si; ri), S deletes pj from Di. If S recorded less than N
documents, it completes this set using random documents of appropriate size. Finally, S
sends (init,P, D1, . . . , DN) to Fdoc.

3. Upon receiving search from Fdoc, S hands A the message retrieve and forwards FbasicDB A’s
response.

This completes the simulation. We prove that the output distribution of P2 in the simulation is
computationally indistinguishable from its output in the real execution. Let fail1 denotes the event
for which there exist i, j0, j1, r0, r1 and s0 6= s1, such that (i, (sib , rib)) ∈ xjb

and comi = com(sib ; rib)
for any b ∈ {0, 1}. Note that if fail1 occurs then the simulation fails. Since in this case S either
sends Di = F̂k(si0) ⊕ Ci or Di = F̂k(si1) ⊕ Ci to the trusted party; let Di = F̂k(si1) ⊕ Ci be this
value. Then in the real execution, if P2 queries the database on a keyword xj0 it would learn a
different value for Di. Clearly, the probability of fail1 is negligible due to the computational binding
of com. We further denote an additional event fail2 in which S completes its set of documents in
Step 2 of the simulation with a document D that contains a keyword p ∈ P. Clearly, the simulation
fails here as well if P2 queries the database on p. Nevertheless, the probability of fail2 is negligible
due to the fact that these documents are uniformly distributed.

Then conditioning on fail1 and fail2 we have that P2 outputs the exact same value in both
executions, since it ignores every document Di for which it does not receive a valid decommitment
for comi or does not include its searched keyword. Specifically for every query pj of P2, it only
outputs Di such that (i, (si, ri)) ∈ xj , comi = com(si, ri), and Di includes pj . Exactly as in the
simulation.

20

Part P2 is corrupted. Let A be an adversary controlling P2; we construct a simulator S that
works as follows:

1. Upon receiving (init, N, M) from Fdoc, simulator S chooses N random pairs (si, ri) of appro-
priate length. If there exist i 6= j such that si ∈ {sj +1, . . . , sj + `} or sj ∈ {si +1, . . . , si + `},
then S outputs fail1 and halts. Otherwise it sends A the commitments comi = com(si; ri).

2. S also chooses N random strings C1, . . . , CN and hands them to A.

3. S emulate FbasicDB and receives from A the message (retrieve, p). It then sends search to
its trusted party that computes Fdoc. If Fdoc responds with allow S sends it (search, p).
Otherwise it hands A disallow.

(a) If Fdoc returns documents D1, . . . , Dt, S continues as follow. It chooses t random indices
i1, . . . , it ∈ {1, . . . , N} that were not chosen before, and sets x = {(i′, (si′ , ri′))} for all
i′ ∈ {i1, . . . , it} (if a document D′ was already returned in a previous search, S chooses
the same index for D′). It then sends x to A, emulating FbasicDB.

(b) If Fdoc returns notFound, S forwards it to A.

4. When A queries Fk(·) on SC with some s, simulator S works as follows:

(a) If there exist an index i′ for which S decommitted comi′ , and an α where s = si′ + α,
then S hands A the αth n-bit block of Ci′ ⊕Di′ .

(b) If there does not exist such an index i′, yet there exists an α where s = si′+α, S outputs
fail2.

(c) Otherwise S chooses a random u ∈R {0, 1}n and hands u to A. S also stores the pair
(s, u) so that if s is queried again, then S will reply with the same u.

This completes the simulation. Note first that the probability that S outputs fail1 or fail2 is
negligible by applying the same arguments from the previous proofs. Now, recall that the only two
messages that A sees are (com1, . . . , comN), which distributes identically in both executions due to
the hiding property of com and (C1, . . . , CN). We further claim that the joint output distribution
of the adversary and the honest P1 in both executions is computationally indistinguishable.

Consider a modification to Protocol 6 where instead of Fk(·), a truly random permutation H is
used; denote the modified protocol by π′. It is straightforward to show that the output distribution
from π′ is computationally indistinguishable from the hybrid protocol. This is due to the fact that
the protocol can be implemented using an oracle to a random or pseudorandom permutation. We
now claim that conditioned on S not outputting fail1 and the analogous event (of si, sj overlapping)
does not occur in π′, the output distribution of S and an honest P1 in the ideal model is statistically
close to the output distribution of A and an honest P1 in an execution of the modified protocol π′.
This is due to the fact that S chooses the u values uniformly at random, exactly like an honest P1

in π′ (where truly random permutations are used to compute these values). Now, since none of the
si and sj values in S’s simulation or in π′ overlap, the distribution over the values is exactly as in
the execution of π′. However, a bad event can happen if A can decrypt a block of some Ci without
learning si. However, this is exactly the event that causes fail2 to occur, and we have already shown
that this occurs with at most negligible probability. This completes the proof of security.

21

7 Conclusions and Future Directions

We have shown that standard smartcards and standard smartcard infrastructure can be used to
construct secure protocols that are orders of magnitude more efficient than all previously known
solutions. In addition to being efficient enough to be used in practice, our protocols have full proofs
of security and achieve simulation according to the ideal/real model paradigm. No cryptographic
protocol for a realistic model has achieved close to the level of efficiency of our protocols. Finally,
we note that since standard smartcards are used, it is not difficult to deploy our solutions in practice
(especially given the fact that smartcards are become more and more ubiquitous today).

We believe that this model should be studied further with the aim of bridging the theory and
practice of secure protocols. In addition to studying what can be achieved in the preferred setting
where only standard smartcards are used, it is also of interest to construct highly efficient protocols
that use special-purpose smartcards that can be implemented in Java applets on Javacards.

Acknowledgements

We thank Danny Tabak for programming the demo of the set intersection protocol.

References

[1] G. Aggarwal, N. Mishra and B. Pinkas. Secure Computation of the K’th-ranked Element.
In EUROCRYPT 2004, Springer-Verlag (LNCS 3027), pages 40–55, 2004.

[2] Y. Aumann and Y. Lindell. Security Against Covert Adversaries: Efficient Protocols for
Realistic Adversaries. In 4th TCC, Springer-Verlag (LNCS 4392), pages 137-156, 2007.

[3] D. Beaver. Foundations of Secure Interactive Computing. In CRYPTO’91, Springer-Verlag
(LNCS 576), pages 377–391, 1991.

[4] M. Ben-Or, S. Goldwasser and A. Wigderson. Completeness Theorems for Non-
Cryptographic Fault-Tolerant Distributed Computation. In 20th STOC, pages 1–10, 1988.

[5] R. Canetti. Security and Composition of Multiparty Cryptographic Protocols. Journal of
Cryptology, 13(1):143–202, 2000.

[6] R. Canetti, Y. Ishai, R. Kumar, M.K. Reiter, R. Rubinfeld and R. Wright. Selective Private
Function Evaluation with Applications to Private Statistics. In 20th PODC, pages 293–304,
2001.

[7] D. Chaum, C. Crépeau and I. Damgard. Multi-party Unconditionally Secure Protocols. In
20th STOC, pages 11–19, 1988.

[8] B. Chor, N. Gilboa, and M. Naor. Private Information Retrieval by Keywords. Technical
Report TR-CS0917, Department of Computer Science, Technion, 1997.

[9] B. Chor, O. Goldreich, E. Kushilevitz and M. Sudan. Private Information Retrieval. Journal
of the ACM, 45(6):965–981, 1998.

[10] M.J. Freedman, Y. Ishai, B. Pinkas, and O. Reingold. Keyword Search and Oblivious
Pseudorandom Functions. In TCC 2005, Springer-Verlag (LNCS 3378), pages 303–324,
2005.

22

[11] M.J. Freedman, K. Nissim and B. Pinkas. Efficient Private Matching and Set Intersection.
In EUROCRYPT 2004, Springer-Verlag (LNCS 3027), pages 1–19, 2004.

[12] O. Goldreich. Foundations of Cryptography: Volume 1 – Basic Tools. Cambridge University
Press, 2001.

[13] O. Goldreich. Foundations of Cryptography: Volume 2 – Basic Applications. Cambridge
University Press, 2004.

[14] O. Goldreich, S. Micali and A. Wigderson. How to Play any Mental Game – A Completeness
Theorem for Protocols with Honest Majority. In 19th STOC, pages 218–229, 1987.

[15] S. Goldwasser and L. Levin. Fair Computation of General Functions in Presence of Immoral
Majority. In CRYPTO’90, Springer-Verlag (LNCS 537), pages 77–93, 1990.

[16] C. Hazay and Y. Lindell. Efficient Protocols for Set Intersection and Pattern Matching with
Security Against Malicious and Covert Adversaries. In 5th TCC, Springer-Verlag (LNCS
4948), pages 155–175, 2008.

[17] L. Kissner and D.X. Song. Privacy-Preserving Set Operations. In CRYPTO 2005, Springer-
Verlag (LNCS 3621), pages 241–257, 2005.

[18] E. Kushilevitz, Y. Lindell and T. Rabin. Information-Theoretically Secure Protocols and
Security Under Composition. In 38th STOC, pages 109–18, 2006.

[19] Y. Lindell and B. Pinkas. Privacy Preserving Data Mining. Journal of Cryptology, 15(3):177–
206, 2002. An extended abstract appeared in CRYPTO 2000.

[20] S. Micali and P. Rogaway. Secure Computation. Unpublished manuscript, 1992. Preliminary
version in CRYPTO’91, Springer-Verlag (LNCS 576), pages 392–404, 1991.

[21] M. Naor and B. Pinkas. Oblivious Transfer and Polynomial Evaluation. In 31st STOC,
pages 245–254, 1999.

[22] T. P. Pedersen. Non-Interactive and Information-Theoretical Secure Verifiable Secret Shar-
ing. CRYPTO 1991, Springer-Verlag (LNCS 576) pages 129–140, 1991.

[23] M. Witteman. Advances in Smartcard Security. Information Security Bulletin, July 2002,
pages 11–22, 2002.

[24] A. Yao. How to Generate and Exchange Secrets. In 27th FOCS, pages 162–167, 1986.

23

